

Analyzing	Data	with	Microsoft	Power
BI	and	Power	Pivot	for	Excel

Alberto	Ferrari	and	Marco	Russo

PUBLISHED	BY
Microsoft	Press
A	division	of	Microsoft	Corporation
One	Microsoft	Way
Redmond,	Washington	98052-6399

Copyright	©	2017	by	Alberto	Ferrari	and	Marco	Russo.

All	rights	reserved.	No	part	of	the	contents	of	this	book	may	be	reproduced	or
transmitted	in	any	form	or	by	any	means	without	the	written	permission	of	the
publisher.

Library	of	Congress	Control	Number:	2016931116
ISBN:	978-1-5093-0276-5

Printed	and	bound	in	the	United	States	of	America.

First	Printing

Microsoft	Press	books	are	available	through	booksellers	and	distributors
worldwide.	If	you	need	support	related	to	this	book,	email	Microsoft	Press
Support	at	mspinput@microsoft.com.	Please	tell	us	what	you	think	of	this	book	at
https://aka.ms/tellpress.

This	book	is	provided	“as-is”	and	expresses	the	author’s	views	and	opinions.	The
views,	opinions	and	information	expressed	in	this	book,	including	URL	and	other
Internet	website	references,	may	change	without	notice.

Some	examples	depicted	herein	are	provided	for	illustration	only	and	are
fictitious.	No	real	association	or	connection	is	intended	or	should	be	inferred.

Microsoft	and	the	trademarks	listed	at	https://www.microsoft.com	on	the
“Trademarks”	webpage	are	trademarks	of	the	Microsoft	group	of	companies.	All
other	marks	are	property	of	their	respective	owners.

Acquisitions	Editor:	Devon	Musgrave
Editorial	Production:	Polymath	Publishing
Technical	Reviewer:	Ed	Price
Copy	Editor:	Kate	Shoup
Layout	Services:	Shawn	Morningstar
Indexing	Services:	Kelly	Talbot	Editing	Services
Proofreading	Services:	Corina	Lebegioara
Cover:	Twist	Creative	•	Seattle

mailto:mspinput@microsoft.com
https://aka.ms/tellpress
https://www.microsoft.com

Contents	at	a	glance

Introduction

Chapter	1	Introduction	to	data	modeling

Chapter	2	Using	header/detail	tables

Chapter	3	Using	multiple	fact	tables

Chapter	4	Working	with	date	and	time

Chapter	5	Tracking	historical	attributes

Chapter	6	Using	snapshots

Chapter	7	Analyzing	date	and	time	intervals

Chapter	8	Many-to-many	relationships

Chapter	9	Working	with	different	granularity

Chapter	10	Segmentation	data	models

Chapter	11	Working	with	multiple	currencies

Appendix	A	Data	modeling	101

Index

Contents

Introduction

Who	this	book	is	for
Assumptions	about	you
Organization	of	this	book
Conventions
About	the	companion	content
Acknowledgments
Errata	and	book	support
We	want	to	hear	from	you
Stay	in	touch

Chapter	1.	Introduction	to	data	modeling
Working	with	a	single	table
Introducing	the	data	model
Introducing	star	schemas
Understanding	the	importance	of	naming	objects
Conclusions

Chapter	2.	Using	header/detail	tables
Introducing	header/detail
Aggregating	values	from	the	header
Flattening	header/detail
Conclusions

Chapter	3.	Using	multiple	fact	tables
Using	denormalized	fact	tables
Filtering	across	dimensions
Understanding	model	ambiguity
Using	orders	and	invoices

Calculating	the	total	invoiced	for	the	customer

Calculating	the	number	of	invoices	that	include	the	given	order	of
the	given	customer
Calculating	the	amount	of	the	order,	if	invoiced

Conclusions

Chapter	4.	Working	with	date	and	time
Creating	a	date	dimension
Understanding	automatic	time	dimensions

Automatic	time	grouping	in	Excel
Automatic	time	grouping	in	Power	BI	Desktop

Using	multiple	date	dimensions
Handling	date	and	time
Time-intelligence	calculations
Handling	fiscal	calendars
Computing	with	working	days

Working	days	in	a	single	country	or	region
Working	with	multiple	countries	or	regions

Handling	special	periods	of	the	year
Using	non-overlapping	periods
Periods	relative	to	today
Using	overlapping	periods

Working	with	weekly	calendars
Conclusions

Chapter	5.	Tracking	historical	attributes
Introducing	slowly	changing	dimensions
Using	slowly	changing	dimensions
Loading	slowly	changing	dimensions

Fixing	granularity	in	the	dimension
Fixing	granularity	in	the	fact	table

Rapidly	changing	dimensions
Choosing	the	right	modeling	technique

Conclusions

Chapter	6.	Using	snapshots
Using	data	that	you	cannot	aggregate	over	time
Aggregating	snapshots
Understanding	derived	snapshots
Understanding	the	transition	matrix
Conclusions

Chapter	7.	Analyzing	date	and	time	intervals
Introduction	to	temporal	data
Aggregating	with	simple	intervals
Intervals	crossing	dates
Modeling	working	shifts	and	time	shifting
Analyzing	active	events
Mixing	different	durations
Conclusions

Chapter	8.	Many-to-many	relationships
Introducing	many-to-many	relationships

Understanding	the	bidirectional	pattern
Understanding	non-additivity

Cascading	many-to-many
Temporal	many-to-many

Reallocating	factors	and	percentages
Materializing	many-to-many

Using	the	fact	tables	as	a	bridge
Performance	considerations

Conclusions

Chapter	9.	Working	with	different	granularity
Introduction	to	granularity
Relationships	at	different	granularity

Analyzing	budget	data
Using	DAX	code	to	move	filters
Filtering	through	relationships
Hiding	values	at	the	wrong	granularity
Allocating	values	at	a	higher	granularity

Conclusions

Chapter	10.	Segmentation	data	models
Computing	multiple-column	relationships
Computing	static	segmentation
Using	dynamic	segmentation
Understanding	the	power	of	calculated	columns:	ABC	analysis
Conclusions

Chapter	11.	Working	with	multiple	currencies
Understanding	different	scenarios
Multiple	source	currencies,	single	reporting	currency
Single	source	currency,	multiple	reporting	currencies
Multiple	source	currencies,	multiple	reporting	currencies
Conclusions

Appendix	A.	Data	modeling	101
Tables
Data	types
Relationships
Filtering	and	cross-filtering
Different	types	of	models

Star	schema
Snowflake	schema
Models	with	bridge	tables

Measures	and	additivity
Additive	measures
Non-additive	measures

Semi-additive	measures

Index

Introduction

Excel	users	love	numbers.	Or	maybe	it’s	that	people	who	love	numbers	love
Excel.	Either	way,	if	you	are	interested	in	gathering	insights	from	any	kind	of
dataset,	it	is	extremely	likely	that	you	have	spent	a	lot	of	your	time	playing	with
Excel,	pivot	tables,	and	formulas.
In	2015,	Power	BI	was	released.	These	days,	it	is	fair	to	say	that	people	who

love	numbers	love	both	Power	Pivot	for	Excel	and	Power	BI.	Both	these	tools
share	a	lot	of	features,	namely	the	VertiPaq	database	engine	and	the	DAX
language,	inherited	from	SQL	Server	Analysis	Services.
With	previous	versions	of	Excel,	gathering	insights	from	numbers	was	mainly	a

matter	of	loading	some	datasets	and	then	starting	to	calculate	columns	and	write
formulas	to	design	charts.	Yes,	there	were	some	limitations:	the	size	of	the
workbook	mattered,	and	the	Excel	formula	language	was	not	the	best	option	for
huge	number	crunching.	The	new	engine	in	Power	BI	and	Power	Pivot	is	a	giant
leap	forward.	Now	you	have	the	full	power	of	a	database	and	a	gorgeous	language
(DAX)	to	leverage.	But,	hey,	with	greater	power	comes	greater	responsibility!	If
you	want	to	really	take	advantage	of	this	new	tool,	you	need	to	learn	more.
Namely,	you	need	to	learn	the	basics	of	data	modeling.
Data	modeling	is	not	rocket	science.	It	is	a	basic	skill	that	anybody	interested	in

gathering	insights	from	data	should	master.	Moreover,	if	you	like	numbers,	then
you	will	love	data	modeling,	too.	So,	not	only	is	it	an	easy	skill	to	acquire,	it	is
also	incredibly	fun.
This	book	aims	to	teach	you	the	basic	concepts	of	data	modeling	through

practical	examples	that	you	are	likely	to	encounter	in	your	daily	life.	We	did	not
want	to	write	a	complex	book	on	data	modeling,	explaining	in	detail	the	many
complex	decisions	that	you	will	need	to	make	to	build	a	complex	solution.	Instead,
we	focused	on	examples	coming	from	our	daily	job	as	consultants.	Whenever	a
customer	asked	us	to	help	solve	a	problem,	if	we	felt	the	issue	is	something
common,	we	stored	it	in	a	bin.	Then,	we	opened	that	bin	and	provided	a	solution
to	each	of	these	examples,	organizing	them	in	a	way	that	it	also	serves	as	a
training	on	data	modeling.
When	you	reach	the	end	of	the	book,	you	will	not	be	a	data-modeling	guru,	but

you	will	have	acquired	a	greater	sensibility	on	the	topic.	If,	at	that	time,	you	look
at	your	database,	trying	to	figure	out	how	to	compute	the	value	you	need,	and	you
start	to	think	that—maybe—changing	the	model	might	help,	then	we	will	have

accomplished	our	goal	with	this	book.	Moreover,	you	will	be	on	your	path	to
becoming	a	successful	data	modeler.	This	last	step—that	is,	becoming	a	great	data
modeler—will	only	come	with	experience	and	after	many	failures.	Unfortunately,
experience	is	not	something	you	can	learn	in	a	book.

Who	this	book	is	for
This	book	has	a	very	wide	target	of	different	kind	of	people.	You	might	be	an
Excel	user	who	uses	Power	Pivot	for	Excel,	or	you	may	be	a	data	scientist	using
Power	BI.	Or	you	could	be	starting	your	career	as	a	business-intelligence
professional	and	you	want	to	read	an	introduction	to	the	topics	of	data	modeling.
In	all	these	scenarios,	this	is	the	book	for	you.
Note	that	we	did	not	include	in	this	list	people	who	want	to	read	a	book	about

data	modeling.	In	fact,	we	wrote	the	book	thinking	that	our	readers	probably	do
not	even	know	they	need	data	modeling	at	all.	Our	goal	is	to	make	you	understand
that	you	need	to	learn	data	modeling	and	then	give	you	some	insights	into	the
basics	of	this	beautiful	science.	Thus,	in	a	sentence	if	you	are	curious	about	what
data	modeling	is	and	why	it	is	a	useful	skill,	then	this	is	the	book	for	you.

Assumptions	about	you
We	expect	our	reader	to	have	a	basic	knowledge	of	Excel	Pivot	Tables	and/or	to
have	used	Power	BI	as	a	reporting	and	modelling	tool.	Some	experience	in
analysis	of	numbers	is	also	very	welcome.	In	the	book,	we	do	not	cover	any
aspect	of	the	user	interface	of	either	Excel	or	Power	BI.	Instead,	we	focus	only	on
data	models,	how	to	build	them,	and	how	to	modify	them,	so	that	the	code
becomes	easier	to	write.	Thus,	we	cover	“what	you	need	to	do”	and	we	leave	the
“how	to	do	it”	entirely	to	you.	We	did	not	want	to	write	a	step-by-step	book.	We
wanted	to	write	a	book	that	teaches	complex	topics	in	an	easy	way.
One	topic	that	we	intentionally	do	not	cover	in	the	book	is	the	DAX	language.	It

would	have	been	impossible	to	treat	data	modeling	and	DAX	in	the	same	book.	If
you	are	already	familiar	with	the	language,	then	you	will	benefit	from	reading	the
many	pieces	of	DAX	spread	throughout	this	book.	If,	on	the	other	hand,	you	still
need	to	learn	DAX,	then	read	The	Definitive	Guide	to	DAX,	which	is	the	most
comprehensive	guide	to	the	DAX	language	and	ties	in	well	with	the	topics	in	this
book.

Organization	of	this	book
The	book	starts	with	a	couple	of	easy,	introductory	chapters	followed	by	a	set	of

monographic	chapters,	each	one	covering	some	specific	kind	of	data	model.	Here
is	a	brief	description	of	each	chapter:

	Chapter	1,	“Introduction	to	data	modeling,”	is	a	brief	introduction	to	the
basic	concepts	of	data	modeling.	Here	we	introduce	what	data	modeling	is,
we	start	speaking	about	granularity,	and	we	define	the	basic	models	of	a
data	warehouse—that	is,	star	schemas,	snowflakes,	normalization,	and
denormalization.
	Chapter	2,	“Using	header/detail	tables,”	covers	a	very	common	scenario:
that	of	header/detail	tables.	Here	you	will	find	discussions	and	solutions	for
scenarios	where	you	have,	for	example,	orders	and	lines	of	orders	in	two
separate	fact	tables.
	Chapter	3,	“Using	multiple	fact	tables,”	describes	scenarios	where	you	have
multiple	fact	tables	and	you	need	to	build	a	report	that	mixes	them.	Here	we
stress	the	relevance	of	creating	a	correct	dimensional	model	to	be	able	to
browse	data	the	right	way.
	Chapter	4,	“Working	with	date	and	time,”	is	one	of	the	longest	of	the	book.	It
covers	time	intelligence	calculations.	We	explain	how	to	build	a	proper	date
table	and	how	to	compute	basic	time	intelligence	(YTD,	QTA,
PARALLELPERIOD,	and	so	on),	and	then	we	show	several	examples	of
working	day	calculations,	handling	special	periods	of	the	year,	and	working
correctly	with	dates	in	general.
	Chapter	5,	“Tracking	historical	attributes,”	describes	the	use	of	slowly
changing	>dimensions	in	your	model.	This	chapter	provides	a	deeper
explanation	of	the	transformation	steps	needed	in	your	model	if	you	need	to
track	changing	attributes	and	how	to	correctly	write	your	DAX	code	in	the
presence	of	slowly	changing	dimensions.
	Chapter	6,	“Using	snapshots,”	covers	the	fascinating	aspects	of	snapshots.
We	introduce	what	a	snapshot	is,	why	and	when	to	use	them,	and	how	to
compute	values	on	top	of	snapshots,	and	we	provide	a	description	of	the
powerful	transition	matrix	model.
	Chapter	7,	“Analyzing	date	and	time	intervals,”	goes	several	steps	forward
from	Chapter	5.	We	cover	time	calculations,	but	this	time	analyzing	models
where	events	stored	in	fact	tables	have	a	duration	and,	hence,	need	some
special	treatment	to	provide	correct	results.
	Chapter	8,	“Many-to-many	relationships,”	explains	how	to	use	many-to-
many	relationships.	Many-to-many	relationships	play	a	very	important	role
in	any	data	model.	We	cover	standard	many-to-many	relationships,

cascading	relationships,	and	their	use	with	reallocation	factors	and	filters,
and	we	discuss	their	performance	and	how	to	improve	it.
	Chapter	9,	“Working	with	different	granularity,”	goes	deeper	into	working
with	fact	tables	stored	at	different	granularities.	We	show	budgeting
examples	where	the	granularity	of	fact	tables	is	different	and	provide
several	alternatives	both	in	DAX	and	in	the	data	model	to	solve	the
scenario.
	Chapter	10,	“Segmentation	data	models,”	explains	several	segmentation
models.	We	start	with	a	simple	segmentation	by	price,	we	then	move	to	the
analysis	of	dynamic	segmentation	using	virtual	relationships,	and	finally	we
explain	the	ABC	analysis	done	in	DAX.
	Chapter	11,	“Working	with	multiple	currencies,”	deals	with	currency
exchange.	When	using	currency	rates,	it	is	important	to	understand	the
requirements	and	then	build	the	proper	model.	We	analyze	several	scenarios
with	different	requirements,	providing	the	best	solution	for	each.
	Appendix	A,	“Data	modeling	101,”	is	intended	to	be	a	reference.	We	briefly
describe	with	examples	the	basic	concepts	treated	in	the	whole	book.
Whenever	you	are	uncertain	about	some	aspect,	you	can	jump	there,	refresh
your	understanding,	and	then	go	back	to	the	main	reading.

The	complexity	of	the	models	and	their	solutions	increase	chapter	by	chapter,
so	it	is	a	good	idea	to	read	this	book	from	the	beginning	rather	than	jumping	from
chapter	to	chapter.	In	this	way,	you	can	follow	the	natural	flow	of	complexity	and
learn	one	topic	at	a	time.	However,	the	book	is	intended	to	become	a	reference
guide,	once	finished.	Thus,	whenever	you	need	to	solve	a	specific	model,	you	can
jump	straight	to	the	chapter	that	covers	it	and	look	into	the	details	of	the	solution.

Conventions
The	following	conventions	are	used	in	this	book:

	Boldface	type	is	used	to	indicate	text	that	you	type.
	Italic	type	is	used	to	indicate	new	terms.
	Code	elements	appear	in	a	monospaced	font.
	The	first	letters	of	the	names	of	dialog	boxes,	dialog	box	elements,	and
commands	are	capitalized—for	example,	the	Save	As	dialog	box.
	Keyboard	shortcuts	are	indicated	by	a	plus	sign	(+)	separating	the	key
names.	For	example,	Ctrl+Alt+Delete	mean	that	you	press	Ctrl,	Alt,	and
Delete	keys	at	the	same	time.

About	the	companion	content
We	have	included	companion	content	to	enrich	your	learning	experience.	The
companion	content	for	this	book	can	be	downloaded	from	the	following	page:

https://aka.ms/AnalyzeData/downloads
The	companion	content	includes	Excel	and/or	Power	BI	Desktop	files	for	all

the	examples	shown	in	the	book.	There	is	a	separate	file	for	each	of	the	figures	of
the	book	so	you	can	analyze	the	different	steps	and	start	exactly	from	the	point
where	you	are	reading	to	follow	the	book	and	try	the	examples	by	yourself.	Most
of	the	examples	are	Power	BI	Desktop	files,	so	we	suggest	that	readers	interested
in	following	the	examples	on	their	PC	download	the	latest	version	of	Power	BI
Desktop	from	the	Power	BI	website.

Acknowledgments
Before	we	leave	this	brief	introduction,	we	feel	the	need	to	say	thank	you	to	our
editor,	Kate	Shoup,	who	helped	us	along	the	whole	process	of	editing,	and	to	our
technical	reviewer,	Ed	Price.	Without	their	meticulous	work,	the	book	would	have
been	much	harder	to	read!	If	the	book	contains	fewer	errors	than	our	original
manuscript,	it	is	only	because	of	them.	If	it	still	contains	errors,	it	is	our	fault,	of
course.

Errata	and	book	support
We	have	made	every	effort	to	ensure	the	accuracy	of	this	book	and	its	companion
content.	Any	errors	that	have	been	reported	since	this	book	was	published	are
listed	on	our	Microsoft	Press	site	at:

https://aka.ms/AnalyzeData/errata
If	you	find	an	error	that	is	not	already	listed,	you	can	report	it	to	us	through	the

same	page.
If	you	need	additional	support,	email	Microsoft	Press	Book	Support	at

mspinput@microsoft.com.
Please	note	that	product	support	for	Microsoft	software	is	not	offered	through

the	addresses	above.

We	want	to	hear	from	you
At	Microsoft	Press,	your	satisfaction	is	our	top	priority	and	your	feedback	our
most	valuable	asset.	Please	tell	us	what	you	think	of	this	book	at:

https://aka.ms/tellpress

https://aka.ms/AnalyzeData/downloads
https://aka.ms/AnalyzeData/errata
mailto:mspinput@microsoft.com
https://aka.ms/tellpress

The	survey	is	short,	and	we	read	every	one	of	your	comments	and	ideas.	Thanks
in	advance	for	your	input!

Stay	in	touch
Let’s	keep	the	conversation	going!	We’re	on	Twitter:	@MicrosoftPress.

http://twitter.com/MicrosoftPress

Chapter	1.	Introduction	to	data	modeling

You’re	about	to	read	a	book	devoted	to	data	modeling.	Before	starting	it,	it	is
worth	determining	why	you	should	learn	data	modeling	at	all.	After	all,	you	can
easily	grab	good	insights	from	your	data	by	simply	loading	a	query	in	Excel	and
then	opening	a	PivotTable	on	top	of	it.	Thus,	why	should	you	learn	anything	about
data	modeling?
As	consultants,	we	are	hired	on	a	daily	basis	by	individuals	or	companies	who

struggle	to	compute	the	numbers	they	need.	They	feel	like	the	number	they’re
looking	for	is	out	there	and	can	be	computed,	but	for	some	obscure	reason,	either
the	formulas	become	too	complicated	to	be	manageable	or	the	numbers	do	not
match.	In	99	percent	of	cases,	this	is	due	to	some	error	in	the	data	model.	If	you	fix
the	model,	the	formula	becomes	easy	to	author	and	understand.	Thus,	you	must
learn	data	modeling	if	you	want	to	improve	your	analytical	capabilities	and	if	you
prefer	to	focus	on	making	the	right	decision	rather	than	on	finding	the	right
complex	DAX	formula.
Data	modeling	is	typically	considered	a	tough	skill	to	learn.	We	are	not	here	to

say	that	this	is	not	true.	Data	modeling	is	a	complex	topic.	It	is	challenging,	and	it
will	require	some	effort	to	learn	it	and	to	shape	your	brain	in	such	a	way	that	you
see	the	model	in	your	mind	when	you	are	thinking	of	the	scenario.	So,	data
modeling	is	complex,	challenging,	and	mind-stretching.	In	other	words,	it	is	totally
fun!
This	chapter	provides	you	with	some	basic	examples	of	reports	where	the

correct	data	model	makes	the	formulas	easier	to	compute.	Of	course,	being
examples,	they	might	not	fit	your	business	perfectly.	Still,	we	hope	they	will	give
you	an	idea	of	why	data	modeling	is	an	important	skill	to	acquire.	Being	a	good
data	modeler	basically	means	being	able	to	match	your	specific	model	with	one	of
the	many	different	patterns	that	have	already	been	studied	and	solved	by	others.
Your	model	is	not	so	different	than	all	the	other	ones.	Yes,	it	has	some
peculiarities,	but	it	is	very	likely	that	your	specific	problem	has	already	been
solved	by	somebody	else.	Learning	how	to	discover	the	similarities	between	your
data	model	and	the	ones	described	in	the	examples	is	difficult,	but	it’s	also	very
satisfying.	When	you	do,	the	solution	appears	in	front	of	you,	and	most	of	the
problems	with	your	calculations	suddenly	disappear.
For	most	of	our	demos,	we	will	use	the	Contoso	database.	Contoso	is	a

fictitious	company	that	sells	electronics	all	over	the	world,	through	different	sales

channels.	It	is	likely	that	your	business	is	different,	in	which	case,	you	will	need	to
match	the	reports	and	insights	we	grab	from	Contoso	to	your	specific	business.
Because	this	is	the	first	chapter,	we	will	start	by	covering	basic	terminology

and	concepts.	We	will	explain	what	a	data	model	is	and	why	relationships	are	an
important	part	of	a	data	model.	We	also	give	a	first	introduction	to	the	concepts	of
normalization,	denormalization,	and	star	schemas.	This	process	of	introducing
concepts	by	examples	will	continue	through	the	whole	book,	but	here,	during	the
first	steps,	it	is	just	more	evident.
Fasten	your	seatbelt!	It’s	time	to	get	started	learning	all	the	secrets	of	data

modeling.

Working	with	a	single	table
If	you	use	Excel	and	PivotTables	to	discover	insights	about	your	data,	chances	are
you	load	data	from	some	source,	typically	a	database,	using	a	query.	Then,	you
create	a	PivotTable	on	top	of	this	dataset	and	start	exploring.	Of	course,	by	doing
that,	you	face	the	usual	limitations	of	Excel—the	most	relevant	being	that	the
dataset	cannot	exceed	1,000,000	rows.	Otherwise,	it	will	not	fit	into	a	worksheet.
To	be	honest,	the	first	time	we	learned	about	this	limitation,	we	did	not	even
consider	it	a	limitation	at	all.	Why	on	Earth	would	somebody	load	more	than
1,000,000	rows	in	Excel	and	not	use	a	database	instead?	The	reason,	you	might
guess,	is	that	Excel	does	not	require	you	to	understand	data	modeling,	whereas	a
database	does.
Anyway,	this	first	limitation—if	you	want	to	use	Excel—can	be	a	very	big	one.

In	Contoso,	the	database	we	use	for	demos,	the	table	containing	the	sales	is	made
of	12,000,000	rows.	Thus,	there	is	no	way	to	simply	load	all	these	rows	in	Excel
to	start	the	analysis.	This	problem	has	an	easy	solution:	Instead	of	retrieving	all
the	rows,	you	can	perform	some	grouping	to	reduce	their	number.	If,	for	example,
you	are	interested	in	the	analysis	of	sales	by	category	and	subcategory,	you	can
choose	not	to	load	the	sales	of	each	product,	and	you	can	group	data	by	category
and	subcategory,	significantly	reducing	the	number	of	rows.
For	example,	the	12,000,000-row	sales	table—when	grouped	by	manufacturer,

brand,	category,	and	subcategory,	while	retaining	the	sales	for	each	day—
produces	a	result	of	63,984	rows,	which	are	easy	to	manage	in	an	Excel
workbook.	Of	course,	building	the	right	query	to	perform	this	grouping	is	typically
a	task	for	an	IT	department	or	for	a	good	query	editor,	unless	you	already	learned
SQL	as	part	of	your	training.	If	not,	then	you	must	ask	your	IT	department	to
produce	such	a	query.	Then,	when	they	come	back	with	the	code,	you	can	start	to

analyze	your	numbers.	In	Figure	1-1,	you	can	see	the	first	few	rows	of	the	table
when	imported	into	Excel.

FIGURE	1-1	Data	from	sales,	when	grouped,	produces	a	small	and	easy-to-
analyze	table.

When	the	table	is	loaded	in	Excel,	you	finally	feel	at	home,	and	you	can	easily
create	a	PivotTable	to	perform	an	analysis	on	the	data.	For	example,	in	Figure	1-
2,	you	can	see	the	sales	divided	by	manufacturer	for	a	given	category,	using	a
standard	PivotTable	and	a	slicer.

FIGURE	1-2	You	can	easily	create	a	PivotTable	on	top	of	an	Excel	table.

Believe	it	or	not,	at	this	point,	you’ve	already	built	a	data	model.	Yes,	it
contains	only	a	single	table,	but	it	is	a	data	model.	Thus,	you	can	start	exploring	its
analytical	power	and	maybe	find	some	way	to	improve	it.	This	data	model	has	a

strong	limitation	because	it	has	fewer	rows	than	the	source	table.
As	a	beginner,	you	might	think	that	the	limit	of	1,000,000	rows	in	an	Excel	table

affects	only	the	number	of	rows	that	you	can	retrieve	to	perform	the	analysis.
While	this	holds	true,	it	is	important	to	note	that	the	limit	on	the	size	directly
translates	into	a	limit	on	the	data	model.	Therefore,	there	is	also	a	limit	on	the
analytical	capabilities	of	your	reports.	In	fact,	to	reduce	the	number	of	rows,	you
had	to	perform	a	grouping	of	data	at	the	source	level,	retrieving	only	the	sales
grouped	by	some	columns.	In	this	example,	you	had	to	group	by	category,
subcategory,	and	some	other	columns.
Doing	this,	you	implicitly	limited	yourself	in	your	analytical	power.	For

example,	if	you	want	to	perform	an	analysis	slicing	by	color,	then	the	table	is	no
longer	a	good	source	because	you	don’t	have	the	product	color	among	the
columns.	Adding	one	column	to	the	query	is	not	a	big	issue.	The	problem	is	that
the	more	columns	you	add,	the	larger	the	table	becomes—not	only	in	width	(the
number	of	columns),	but	also	in	length	(the	number	of	rows).	In	fact,	a	single	line
holding	the	sales	for	a	given	category—	Audio,	for	example—will	become	a	set
of	multiple	rows,	all	containing	Audio	for	the	category,	but	with	different	values
for	the	different	colors.
On	the	extreme	side,	if	you	do	not	want	to	decide	in	advance	which	columns

you	will	use	to	slice	the	data,	you	will	end	up	having	to	load	the	full	12,000,000
rows—meaning	an	Excel	table	is	no	longer	an	option.	This	is	what	we	mean	when
we	say	that	Excel’s	modeling	capabilities	are	limited.	Not	being	able	to	load
many	rows	implicitly	translates	into	not	being	able	to	perform	advanced	analysis
on	large	volumes	of	data.
This	is	where	Power	Pivot	comes	into	play.	Using	Power	Pivot,	you	no	longer

face	the	limitation	of	1,000,000	rows.	Indeed,	there	is	virtually	no	limit	on	the
number	of	rows	you	can	load	in	a	Power	Pivot	table.	Thus,	by	using	Power	Pivot,
you	can	load	the	whole	sales	table	in	the	model	and	perform	a	deeper	analysis	of
your	data.

	Note

Power	Pivot	has	been	available	in	Excel	since	Excel	2010	as	an
external	add-in,	and	it	has	been	included	as	part	of	the	product	since
Excel	2013.	Starting	in	Excel	2016,	Microsoft	began	using	a	new
name	to	describe	a	Power	Pivot	model:	Excel	Data	Model.
However,	the	term	Power	Pivot	is	still	used,	too.

Because	you	have	all	the	sales	information	in	a	single	table,	you	can	perform	a
more	detailed	analysis	of	your	data.	For	example,	in	Figure	1-3,	you	can	see	a
PivotTable	coming	from	the	data	model	(that	is,	Power	Pivot),	with	all	the
columns	loaded.	Now,	you	can	slice	by	category,	color,	and	year,	because	all	this
information	is	in	the	same	place.	Having	more	columns	available	in	your	table
increases	its	analytical	power.

FIGURE	1-3	If	all	the	columns	are	available,	you	can	build	more	interesting
PivotTables	on	top	of	your	data.

This	simple	example	is	already	useful	to	learn	the	first	lesson	about	data
modeling:	Size	matters	because	it	relates	to	granularity.	But	what	is
granularity?	Granularity	is	one	of	the	most	important	concepts	you	will	learn	in
this	book,	so	we	are	introducing	the	concept	as	early	as	we	can.	There	will	be
time	to	go	deeper	in	the	rest	of	the	book.	For	now,	let	us	start	with	a	simple
description	of	granularity.	In	the	first	dataset,	you	grouped	information	at	the
category	and	subcategory	levels,	losing	some	detail	in	favor	of	a	smaller	size.	A
more	technical	way	to	express	this	is	to	say	that	you	chose	the	granularity	of	the
information	at	the	category	and	subcategory	level.	You	can	think	of	granularity	as
the	level	of	detail	in	your	tables.	The	higher	the	granularity,	the	more	detailed	your
information.	Having	more	details	means	being	able	to	perform	more	detailed
(granular)	analyses.	In	this	last	dataset,	the	one	loaded	in	Power	Pivot,	the
granularity	is	at	the	product	level	(actually,	it	is	even	finer	than	that—it	is	at	the
level	of	the	individual	sale	of	the	product),	whereas	in	the	previous	model,	it	was
at	the	category	and	subcategory	level.	Your	ability	to	slice	and	dice	depends	on
the	number	of	columns	in	the	table—thus,	on	its	granularity.	You	have	already
learned	that	increasing	the	number	of	columns	increases	the	number	of	rows.
Choosing	the	correct	granularity	level	is	always	challenging.	If	you	have	data	at

the	wrong	granularity,	formulas	are	nearly	impossible	to	write.	This	is	because
either	you	have	lost	the	information	(as	in	the	previous	example,	where	you	did
not	have	the	color	information)	or	it	is	scattered	around	the	table,	where	it	is
organized	in	the	wrong	way.	In	fact,	it	is	not	correct	to	say	that	a	higher	granularity
is	always	a	good	option.	You	must	have	data	at	the	right	granularity,	where	right
means	the	best	level	of	granularity	to	meet	your	needs,	whatever	they	are.
You	have	already	seen	an	example	of	lost	information.	But	what	do	we	mean	by

scattered	information?	This	is	a	little	bit	harder	to	see.	Imagine,	for	example,	that
you	want	to	compute	the	average	yearly	income	of	customers	who	buy	a	selection
of	your	products.	The	information	is	there	because,	in	the	sales	table,	you	have	all
the	information	about	your	customers	readily	available.	This	is	shown	in	Figure	1-
4,	which	contains	a	selection	of	the	columns	of	the	table	we	are	working	on.	(You
must	open	the	Power	Pivot	window	to	see	the	table	content.)

FIGURE	1-4	The	product	and	customer	information	is	stored	in	the	same	table.

On	every	row	of	the	Sales	table,	there	is	an	additional	column	reporting	the
yearly	income	of	the	customer	who	bought	that	product.	A	simple	trial	to	compute
the	average	yearly	income	of	customers	would	involve	authoring	a	DAX	measure
like	the	following:
Click	here	to	view	code	image

AverageYearlyIncome	:=	AVERAGE	(

Sales[YearlyIncome])

The	measure	works	just	fine,	and	you	can	use	it	in	a	PivotTable	like	the	one	in
Figure	1-5,	which	shows	the	average	yearly	income	of	the	customers	buying	home
appliances	of	different	brands.

FIGURE	1-5	The	figure	shows	an	analysis	of	the	average	yearly	income	of
customers	buying	home	appliances.

The	report	looks	fine,	but,	unfortunately,	the	computed	number	is	incorrect:	It	is
highly	exaggerated.	In	fact,	what	you	are	computing	is	the	average	over	the	sales
table,	which	has	a	granularity	at	the	individual	sale	level.	In	other	words,	the	sales
table	contains	a	row	for	each	sale,	which	means	there	are	potentially	multiple
rows	for	the	same	customer.	So	if	a	customer	buys	three	products	on	three
different	dates,	it	will	be	counted	three	times	in	the	average,	producing	an
inaccurate	result.
You	might	argue	that,	in	this	way,	you	are	computing	a	weighted	average,	but

this	is	not	totally	true.	In	fact,	if	you	want	to	compute	a	weighted	average,	you
must	define	the	weight—and	you	would	not	choose	the	weight	to	be	the	number	of
buy	events.	You	are	more	likely	to	use	the	number	of	products	as	the	weight,	or	the
total	amount	spent,	or	some	other	meaningful	value.	Moreover,	in	this	example,	we
just	wanted	to	compute	a	basic	average,	and	the	measure	is	not	computing	it
accurately.
Even	if	it	is	a	bit	harder	to	notice,	we	are	also	facing	a	problem	of	an	incorrect

granularity.	In	this	case,	the	information	is	available,	but	instead	of	being	linked	to
an	individual	customer,	it	is	scattered	all	around	the	sales	table,	making	it	hard	to
write	the	calculation.	To	obtain	a	correct	average,	you	must	fix	the	granularity	at
the	customer	level	by	either	reloading	the	table	or	relying	on	a	more	complex
DAX	formula.
If	you	want	to	rely	on	DAX,	you	would	use	the	following	formulation	for	the

average,	but	it	is	a	little	challenging	to	comprehend:
Click	here	to	view	code	image

CorrectAverage	:=

AVERAGEX	(

				SUMMARIZE	(

								Sales,

								Sales[CustomerKey],

								Sales[YearlyIncome]

),

				Sales[YearlyIncome]

)

This	formula	is	not	easy	to	understand	because	you	must	first	aggregate	the
sales	at	the	customer	level	(of	granularity)	and	then	perform	an	AVERAGE
operation	on	the	resulting	table	where	each	customer	appears	only	once.	In	the
example,	we	are	using	SUMMARIZE	to	perform	the	pre-aggregation	at	the
customer	level	in	a	temporary	table,	and	then	we	average	the	YearlyIncome	of
that	temporary	table.	As	you	can	see	in	Figure	1-6,	the	correct	number	is	very
different	from	the	incorrect	number	we	previously	calculated.

FIGURE	1-6	The	correct	average	side-by-side	data	(including	the	incorrect
average)	show	how	far	we	were	from	the	accurate	insight.

It	is	worth	spending	some	time	to	acquire	a	good	understanding	of	this	simple
fact:	The	yearly	income	is	a	piece	of	information	that	has	a	meaning	at	the
customer	granularity.	At	the	individual	sale	level,	that	number—although	correct
—is	not	in	the	right	place.	Or,	stated	differently,	you	cannot	use	a	value	that	has	a
meaning	at	the	customer	level	with	the	same	meaning	at	the	individual	sale	level.
In	fact,	to	gather	the	right	result,	we	had	to	reduce	the	granularity,	although	in	a
temporary	table.

There	are	a	couple	of	important	lessons	to	learn	from	this	example:
	The	correct	formula	is	much	more	complex	than	a	simple	AVERAGE.	You
needed	to	perform	a	temporary	aggregation	of	values	to	correct	the
granularity	of	the	table	because	the	data	is	scattered	around	the	table	instead
of	being	in	an	organized	placement.
	It	is	very	likely	that	you	would	not	notice	these	errors	if	you	were	not
familiar	with	your	data.	Looking	at	the	report	in	Figure	1-6,	you	might	easily
spot	that	the	yearly	income	looks	too	high	to	be	true—as	if	none	of	your
customers	earns	less	than	$2,000,000	a	year!	But	for	more	complex
calculations,	identifying	the	error	can	be	much	more	complex	and	might
result	in	a	report	showing	inaccurate	numbers.

You	must	increase	the	granularity	to	produce	reports	at	the	desired	detail,	but
increasing	it	too	much	makes	it	harder	to	compute	some	numbers.	How	do	you
choose	the	correct	granularity?	Well,	this	is	a	difficult	question;	we	will	save	the
answer	for	later.	We	hope	to	be	able	to	transfer	to	you	the	knowledge	to	detect	the
correct	granularity	of	data	in	your	models,	but	keep	in	mind	that	choosing	the
correct	granularity	is	a	hard	skill	to	develop,	even	for	seasoned	data	modelers.
For	now,	it	is	enough	to	start	learning	what	granularity	is	and	how	important	it	is
to	define	the	correct	granularity	for	each	table	in	your	model.
In	reality,	the	model	on	which	we	are	working	right	now	suffers	from	a	bigger

issue,	which	is	somewhat	related	to	granularity.	In	fact,	the	biggest	issue	with	this
model	is	that	it	has	a	single	table	that	contains	all	the	information.	If	your	model
has	a	single	table,	as	in	this	example,	then	you	must	choose	the	granularity	of	the
table,	taking	into	account	all	the	possible	measures	and	analyses	that	you	might
want	to	perform.	No	matter	how	hard	you	work,	the	granularity	will	never	be
perfect	for	all	your	measures.	In	the	next	sections,	we	will	introduce	the	method	of
using	multiple	tables,	which	gives	you	better	options	for	multiple	granularities.

Introducing	the	data	model
You	learned	in	the	previous	section	that	a	single-table	model	presents	issues	in
defining	the	correct	granularity.	Excel	users	often	employ	single-table	models
because	this	was	the	only	option	available	to	build	PivotTables	before	the	release
of	the	2013	version	of	Excel.	In	Excel	2013,	Microsoft	introduced	the	Excel	Data
Model,	to	let	you	load	many	tables	and	link	them	through	relationships,	giving
users	the	capability	to	create	powerful	data	models.
What	is	a	data	model?	A	data	model	is	just	a	set	of	tables	linked	by

relationships.	A	single-table	model	is	already	a	data	model,	although	not	a	very

interesting	one.	As	soon	as	you	have	multiple	tables,	the	presence	of	relationships
makes	the	model	much	more	powerful	and	interesting	to	analyze.
Building	a	data	model	becomes	natural	as	soon	as	you	load	more	than	one	table.

Moreover,	you	typically	load	data	from	databases	handled	by	professionals	who
created	the	data	model	for	you.	This	means	your	data	model	will	likely	mimic	the
one	that	already	exists	in	the	source	database.	In	this	respect,	your	work	is
somewhat	simplified.
Unfortunately,	as	you	learn	in	this	book,	it	is	very	unlikely	that	the	source	data

model	is	perfectly	structured	for	the	kind	of	analysis	you	want	to	perform.	By
showing	examples	of	increasing	complexity,	our	goal	is	to	teach	you	how	to	start
from	any	data	source	to	build	your	own	model.	To	simplify	your	learning
experience,	we	will	gradually	cover	these	techniques	in	the	rest	of	the	book.	For
now,	we	will	start	with	the	basics.
To	introduce	the	concept	of	a	data	model,	load	the	Product	and	Sales	tables

from	the	Contoso	database	into	the	Excel	data	model.	When	the	tables	are	loaded,
you’ll	get	the	diagram	view	shown	in	Figure	1-7,	where	you	can	see	the	two
tables	along	with	their	columns.

FIGURE	1-7	Using	the	data	model,	you	can	load	multiple	tables.

	Note

The	relationship	diagram	is	available	in	Power	Pivot.	To	access	it,
click	the	Power	Pivot	tab	in	the	Excel	ribbon	and	click	Manage.
Then,	in	the	Home	tab	of	the	Power	Pivot	window,	click	Diagram
View	in	the	View	group.

Two	disconnected	tables,	as	in	this	example,	are	not	yet	a	true	data	model.	They
are	only	two	tables.	To	transform	this	into	a	more	meaningful	model,	you	must
create	a	relationship	between	the	two	tables.	In	this	example,	both	the	Sales	table
and	the	Product	table	have	a	ProductKey	column.	In	Product,	this	is	a	primary
key,	meaning	it	has	a	different	value	in	each	row	and	can	be	used	to	uniquely
identify	a	product.	In	the	Sales	table,	it	serves	a	different	purpose:	to	identify	the

product	sold.

	Info

The	primary	key	of	a	table	is	a	column	that	has	a	different	value	for
every	row.	Thus,	once	you	know	the	value	of	the	column,	you	can
uniquely	identify	its	position	in	the	table—that	is,	its	row.	You	might
have	multiple	columns	that	have	a	unique	value;	all	of	them	are	keys.
The	primary	key	is	nothing	special.	From	a	technical	point	of	view,	it
is	just	the	column	that	you	consider	as	the	one	that	uniquely	identifies
a	row.	In	a	customer	table,	for	example,	the	primary	key	is	the
customer	code,	even	if	it	might	be	the	case	that	the	name	is	also	a
unique	column.

When	you	have	a	unique	identifier	in	a	table,	and	a	column	in	another	table	that
references	it,	you	can	create	a	relationship	between	the	two	tables.	Both	facts	must
hold	true	for	the	relationship	to	be	valid.	If	you	have	a	model	where	the	desired
key	for	the	relationship	is	not	a	unique	identifier	in	one	of	the	two	tables,	you	must
massage	the	model	with	one	of	the	many	techniques	you	learn	in	this	book.	For
now,	let	us	use	this	example	to	state	some	facts	about	a	relationship:

	The	Sales	table	is	called	the	source	table	The	relationship	starts	from
Sales.	This	is	because,	to	retrieve	the	product,	you	always	start	from	Sales.
You	gather	the	product	key	value	in	the	Sales	and	search	for	it	in	the	Product
table.	At	that	point,	you	know	the	product,	along	with	all	its	attributes.
	The	Product	table	is	known	as	the	target	of	the	relationship	This	is
because	you	start	from	Sales	and	you	reach	Product.	Thus,	Product	is	the
target	of	your	search.
	A	relationship	starts	from	the	source	and	it	reaches	the	target	In	other
words,	a	relationship	has	a	direction.	This	is	why	it	is	often	represented	as
an	arrow	starting	from	the	source	and	indicating	the	target.	Different
products	use	different	graphical	representations	for	a	relationship.
	The	source	table	is	also	called	the	many	side	of	the	relationship	This
name	comes	from	the	fact	that,	for	any	given	product,	there	are	likely	to	be
many	sales,	whereas	for	a	given	sale,	there	is	only	one	product.	For	this
same	reason,	the	target	table	is	known	as	the	one	side	of	the	relationship.
This	book	uses	one	side	and	many	side	terminology.
	The	ProductKey	column	exists	in	both	the	Sales	and	Product	tables

ProductKey	is	a	key	in	Product,	but	it	is	not	a	key	in	Sales.	For	this	reason,
it	is	called	a	primary	key	when	used	in	Product,	whereas	it	is	called	a
foreign	key	when	used	in	Sales.	A	foreign	key	is	a	column	that	points	to	a
primary	key	in	another	table.

All	these	terms	are	very	commonly	used	in	the	world	of	data	modeling,	and	this
book	is	no	exception.	Now	that	we’ve	introduced	them	here,	we	will	use	them
often	throughout	the	book.	But	don’t	worry.	We	will	repeat	the	definitions	a	few
times	in	the	first	few	chapters	until	you	become	acquainted	with	them.
Using	both	Excel	and	Power	BI,	you	can	create	a	relationship	between	two

tables	by	dragging	the	foreign	key	(that	is,	ProductKey	in	Sales)	and	dropping	it
on	the	primary	key	(that	is,	ProductKey	in	Product).	If	you	do	so,	you	will	quickly
discover	that	both	Excel	and	Power	BI	do	not	use	arrows	to	show	relationships.	In
fact,	in	the	diagram	view,	a	relationship	is	drawn	identifying	the	one	and	the	many
side	with	a	number	(one)	and	an	asterisk	(many).	Figure	1-8	illustrates	this	in
Power	Pivot’s	diagram	view.	Note	that	there	is	also	an	arrow	in	the	middle,	but	it
does	not	represent	the	direction	of	the	relationship.	Rather,	it	is	the	direction	of
filter	propagation	and	serves	a	totally	different	purpose,	which	we	will	discuss
later	in	this	book.

FIGURE	1-8	A	relationship	is	represented	as	a	line,	in	this	case	connecting	the
Product	and	Sales	tables,	with	an	indication	of	the	side	(1	for	one	side,	*	for	many

side).

	Note

If	your	Power	Pivot	tab	disappears,	it	is	likely	because	Excel	ran
into	an	issue	and	disabled	the	add-in.	To	re-enable	the	Power	Pivot
add-in,	click	the	File	tab	and	click	Options	in	the	left	pane.	In	the	left
pane	of	the	Excel	Options	window,	click	Add-Ins.	Then,	open	the
Manage	list	box	at	the	bottom	of	the	page,	select	COM	Add-Ins,	and
click	Go.	In	the	COM	Add-Ins	window,	select	Microsoft	Power
Pivot	for	Excel.	Alternatively,	if	it	is	already	selected,	then	deselect
it.	Then	click	OK.	If	you	deselected	Power	Pivot,	return	to	the	COM
Add-Ins	window	and	re-select	the	add-in.	The	Power	Pivot	tab

should	return	to	your	ribbon.

When	the	relationship	is	in	place,	you	can	sum	the	values	from	the	Sales	table,
slicing	them	by	columns	in	the	Product	table.	In	fact,	as	shown	in	Figure	1-9,	you
can	use	Color	(that	is,	a	column	from	the	Product	table—refer	to	Figure	1-8)	to
slice	the	sum	of	Quantity	(that	is,	a	column	in	the	Sales	table).

FIGURE	1-9	Once	a	relationship	is	in	place,	you	can	slice	the	values	from	one
table	by	using	columns	in	another	one.

You	have	seen	your	first	example	of	a	data	model	with	two	tables.	As	we	said,
a	data	model	is	simply	a	set	of	tables	(Sales	and	Product,	in	this	example)	that	are
linked	by	relationships.	Before	moving	on	with	more	examples,	let	us	spend	a
little	more	time	discussing	granularity—this	time,	in	the	case	where	there	are
multiple	tables.
In	the	first	section	of	this	chapter,	you	learned	how	important—and	complex—it

is	to	define	the	correct	granularity	for	a	single	table.	If	you	make	the	wrong
choice,	calculations	suddenly	become	much	harder	to	author.	What	about
granularity	in	the	new	data	model,	which	now	contains	two	tables?	In	this	case,
the	problem	is	somewhat	different,	and	to	some	extent,	easier	to	solve,	even	if—at
the	same	time—it’s	a	bit	more	complex	to	understand.
Because	there	are	two	tables,	now	you	have	two	different	granularities.	Sales

has	a	granularity	at	the	individual	sale	level,	whereas	Product	has	a	granularity	at

the	product	level.	In	fact,	granularity	is	a	concept	that	is	applied	to	a	table,	not	to
the	model	as	a	whole.	When	you	have	many	tables,	you	must	adjust	the	granularity
level	for	each	table	in	the	model.	Even	if	this	looks	to	be	more	complex	than	the
scenario	where	you	have	a	single	table,	it	naturally	leads	to	models	that	are
simpler	to	manage	and	where	granularity	is	no	longer	an	issue.
In	fact,	now	that	you	have	two	tables,	it	is	very	natural	to	define	the	granularity

of	Sales	at	the	individual	sale	level	and	the	granularity	of	Product	to	its	correct
one,	at	the	product	level.	Recall	the	first	example	in	this	chapter.	You	had	a	single
table	containing	sales	at	the	granularity	of	the	product	category	and	subcategory.
This	was	because	the	product	category	and	product	subcategory	were	stored	in	the
Sales	table.	In	other	words,	you	had	to	make	a	decision	about	granularity,
mainly	because	you	stored	information	in	the	wrong	place.	Once	each	piece	of
information	finds	its	right	place,	granularity	becomes	much	less	of	a	problem.
In	fact,	the	product	category	is	an	attribute	of	a	product,	not	of	an	individual

sale.	It	is—in	some	sense—an	attribute	of	a	sale,	but	only	because	a	sale	is
pertinent	to	a	product.	Once	you	store	the	product	key	in	the	Sales	table,	you	rely
on	the	relationship	to	retrieve	all	the	attributes	of	the	product,	including	the
product	category,	the	color,	and	all	the	other	product	information.	Thus,	because
you	do	not	need	to	store	the	product	category	in	Sales,	the	problem	of	granularity
becomes	much	less	of	an	issue.	Of	course,	the	same	happens	for	all	the	attributes
of	Product—for	example	the	color,	the	unit	price,	the	product	name,	and,
generally,	all	the	columns	in	the	Product	table.

	Info

In	a	correctly	designed	model,	granularity	is	set	at	the	correct	level
for	each	table,	leading	to	a	simpler	and,	at	the	same	time,	more
powerful	structure.	This	is	the	power	of	relationships—a	power	that
you	can	use	once	you	start	thinking	in	terms	of	multiple	tables	and	get
rid	of	the	single-table	approach	you	probably	inherited	from	Excel.

If	you	look	carefully	at	the	Product	table,	you	will	notice	that	the	product
category	and	subcategory	are	missing.	Instead,	there	is	a	ProductSubcategoryKey
column,	whose	name	suggests	that	it	is	a	reference	(that	is,	a	foreign	key)	to	the
key	in	another	table	(where	it	is	a	primary	key)	that	contains	the	product
subcategories.	In	fact,	in	the	database,	there	are	two	tables	containing	a	product
category	and	product	subcategory.	Once	you	load	both	of	them	into	the	model	and
build	the	right	relationships,	the	structure	mirrors	the	one	shown	in	Figure	1-10,	in

Power	Pivot’s	diagram	view.

FIGURE	1-10	Product	categories	and	subcategories	are	stored	in	different	tables,
which	are	reachable	by	relationships.

As	you	can	see,	information	about	a	product	is	stored	in	three	different	tables:
Product,	Product	Subcategory,	and	Product	Category.	This	creates	a	chain	of
relationships,	starting	from	Product,	reaching	Product	Subcategory,	and	finally
Product	Category.
What	is	the	reason	for	this	design	technique?	At	first	sight,	it	looks	like	a

complex	mode	to	store	a	simple	piece	of	information.	However,	this	technique	has
many	advantages,	even	if	they	are	not	very	evident	at	first	glance.	By	storing	the
product	category	in	a	separate	table,	you	have	a	data	model	where	the	category
name,	although	referenced	from	many	products,	is	stored	in	a	single	row	of	the
Product	Category	table.	This	is	a	good	method	of	storing	information	for	two
reasons.	First,	it	reduces	the	size	on	disk	of	the	model	by	avoiding	repetitions	of
the	same	name.	Second,	if	at	some	point	you	must	update	the	category	name,	you
only	need	to	do	it	once	on	the	single	row	that	stores	it.	All	the	products	will
automatically	use	the	new	name	through	the	relationship.
There	is	a	name	for	this	design	technique:	normalization.	An	attribute	such	as

the	product	category	is	said	to	be	normalized	when	it	is	stored	in	a	separate	table
and	replaced	with	a	key	that	points	to	that	table.	This	is	a	very	well-known
technique	and	is	widely	used	by	database	designers	when	they	create	a	data
model.	The	opposite	technique—that	is,	storing	attributes	in	the	table	to	which
they	belong—is	called	denormalization.	When	a	model	is	denormalized,	the	same
attribute	appears	multiple	times,	and	if	you	need	to	update	it,	you	will	have	to
update	all	the	rows	containing	it.	The	color	of	a	product,	for	instance,	is
denormalized,	because	the	string	“Red”	appears	in	all	the	red	products.

At	this	point,	you	might	wonder	why	the	designer	of	the	Contoso	database
decided	to	store	categories	and	subcategories	in	different	tables	(in	other	words,
to	normalize	them),	but	to	store	the	color,	manufacturer,	and	brand	in	the	Product
table	(in	other	words,	to	denormalize	them).	Well,	in	this	specific	case,	the	answer
is	an	easy	one:	Contoso	is	a	demo	database,	and	its	structure	is	intended	to
illustrate	different	design	techniques.	In	the	real	world—that	is,	with	your
organization’s	databases—you	will	probably	find	a	data	structure	that	is	either
highly	normalized	or	highly	denormalized	because	the	choice	depends	on	the
usage	of	the	database.	Nevertheless,	be	prepared	to	find	some	attributes	that	are
normalized	and	some	other	that	are	denormalized.	It	is	perfectly	normal	because
when	it	comes	to	data	modeling,	there	are	a	lot	of	different	options.	It	might	be	the
case	that,	over	time,	the	designer	has	been	driven	to	take	different	decisions.
Highly	normalized	structures	are	typical	of	online	transactional	processing

(OLTP)	systems.	OLTP	systems	are	databases	that	are	designed	to	handle	your
everyday	jobs.	That	includes	operations	like	preparing	invoices,	placing	orders,
shipping	goods,	and	solving	claims.	These	databases	are	very	normalized	because
they	are	designed	to	use	the	least	amount	of	space	(which	typically	means	they	run
faster)	with	a	lot	of	insert	and	update	operations.	In	fact,	during	the	everyday	work
of	a	company,	you	typically	update	information—for	example,	about	a	customer—
want	it	to	be	automatically	updated	on	all	the	data	that	reference	this	customer.
This	happens	in	a	smooth	way	if	the	customer	information	is	correctly	normalized.
Suddenly,	all	the	orders	from	the	customer	will	refer	to	the	new,	updated
information.	If	the	customer	information	were	denormalized,	updating	the	address
of	a	customer	would	result	in	hundreds	of	update	statements	executed	by	the
server,	causing	poor	performance.
OLTP	systems	often	consist	of	hundreds	of	tables	because	nearly	every	attribute

is	stored	in	a	separate	table.	In	products,	for	example,	you	will	probably	find	one
table	for	the	manufacturer,	one	for	the	brand,	one	for	the	color,	and	so	on.	Thus,	a
simple	entity	like	the	product	might	be	stored	in	10	or	20	different	tables,	all
linked	through	relationships.	This	is	what	a	database	designer	would	proudly	call
a	“well	designed	data	model,”	and,	even	if	it	might	look	strange,	she	would	be
right	in	being	proud	of	it.	Normalization,	for	OLTP	databases,	is	nearly	always	a
valuable	technique.
The	point	is	that	when	you	analyze	data,	you	perform	no	insert	and	no	update.

You	are	interested	only	in	reading	information.	When	you	only	read,	normalization
is	almost	never	a	good	technique.	As	an	example,	suppose	you	create	a	PivotTable
on	the	previous	data	model.	Your	field	list	will	look	similar	to	what	you	see	in
Figure	1-11.

FIGURE	1-11	The	field	list	on	a	normalized	model	has	too	many	tables	available
and	might	become	messy.

The	product	is	stored	in	three	tables;	thus,	you	see	three	tables	in	the	field	list
(in	the	PivotTable	Fields	pane).	Worse,	the	Product	Category	and	Product
Subcategory	tables	contain	only	a	single	column	each.	Thus,	even	if	normalization
is	good	for	OLTP	systems,	it	is	typically	a	bad	choice	for	an	analytical	system.
When	you	slice	and	dice	numbers	in	a	report,	you	are	not	interested	in	a	technical
representation	of	a	product;	you	want	to	see	the	category	and	subcategory	as
columns	in	the	Product	table,	which	creates	a	more	natural	way	of	browsing	your
data.

	Note

In	this	example,	we	deliberately	hid	some	useless	columns	like	the
primary	keys	of	the	table,	which	is	always	a	good	technique.
Otherwise	you	would	see	multiple	columns,	which	make	the	model
even	harder	to	browse.	You	can	easily	imagine	what	the	field	list
would	look	like	with	tens	of	tables	for	the	product;	it	would	take	a
considerable	amount	time	to	find	the	right	columns	to	use	in	the
report.

Ultimately,	when	building	a	data	model	to	do	reporting,	you	must	reach	a

reasonable	level	of	denormalization	no	matter	how	the	original	data	is	stored.	As
you’ve	seen,	if	you	denormalize	too	much,	you	face	the	problem	of	granularity.
Later	in	this	book,	you	will	see	that	over-denormalizing	a	model	has	other
negative	consequences,	too.	What	is,	then,	the	correct	level	of	denormalization?
There	is	no	defined	rule	on	how	to	obtain	the	perfect	level	of	denormalization.

Nevertheless,	intuitively,	you	denormalize	up	to	the	point	where	a	table	is	a	self-
contained	structure	that	completely	describes	the	entity	it	stores.	Using	the
example	discussed	in	this	section,	you	should	move	the	Product	Category	and
Product	Subcategory	columns	in	the	Product	table	because	they	are	attributes	of	a
product,	and	you	do	not	want	them	to	reside	in	separate	tables.	But	you	do	not
denormalize	the	product	in	the	Sales	table	because	products	and	sales	are	two
different	pieces	of	information.	A	sale	is	pertinent	to	a	product,	but	there	is	no
way	a	sale	can	be	completely	identified	with	a	product.
At	this	point,	you	might	think	of	the	model	with	a	single	table	as	being	over-

denormalized.	That	is	perfectly	true.	In	fact,	we	had	to	worry	about	product
attribute	granularity	in	the	Sales	table,	which	is	wrong.	If	the	model	is	designed
the	right	way,	with	the	right	level	of	denormalization,	then	granularity	comes	out	in
a	very	natural	way.	On	the	other	hand,	if	the	model	is	over-denormalized,	then	you
must	worry	about	granularity,	and	you	start	facing	issues.

Introducing	star	schemas
So	far,	we	have	looked	at	very	simple	data	models	that	contained	products	and
sales.	In	the	real	world,	few	models	are	so	simple.	In	a	typical	company	like
Contoso,	there	are	several	informational	assets:	products,	stores,	employees,
customers,	and	time.	These	assets	interact	with	each	other,	and	they	generate
events.	For	example,	a	product	is	sold	by	an	employee,	who	is	working	in	a	store,
to	a	particular	customer,	and	on	a	given	date.
Obviously,	different	businesses	manage	different	assets,	and	their	interactions

generate	different	events.	However,	if	you	think	in	a	generic	way,	there	is	almost
always	a	clear	separation	between	assets	and	events.	This	structure	repeats	itself
in	any	business,	even	if	the	assets	are	very	different.	For	example,	in	a	medical
environment,	assets	might	include	patients,	diseases,	and	medications,	whereas	an
event	is	a	patient	being	diagnosed	with	a	specific	disease	and	obtaining	a
medication	to	resolve	it.	In	a	claim	system,	assets	might	include	customers,
claims,	and	time,	while	events	might	be	the	different	statuses	of	a	claim	in	the
process	of	being	resolved.	Take	some	time	to	think	about	your	specific	business.
Most	likely,	you	will	be	able	to	clearly	separate	between	your	assets	and	events.

This	separation	between	assets	and	events	leads	to	a	data-modeling	technique
known	as	a	star	schema.	In	a	star	schema,	you	divide	your	entities	(tables)	into
two	categories:

	Dimensions	A	dimension	is	an	informational	asset,	like	a	product,	a
customer,	an	employee,	or	a	patient.	Dimensions	have	attributes.	For
example,	a	product	has	attributes	like	its	color,	its	category	and	subcategory,
its	manufacturer,	and	its	cost.	A	patient	has	attributes	such	as	a	name,
address,	and	date	of	birth.
	Facts	A	fact	is	an	event	involving	some	dimensions.	In	Contoso,	a	fact	is	the
sale	of	a	product.	A	sale	involves	a	product,	a	customer,	a	date,	and	other
dimensions.	Facts	have	metrics,	which	are	numbers	that	you	can	aggregate	to
obtain	insights	from	your	business.	A	metric	can	be	the	quantity	sold,	the
sales	amount,	the	discount	rate,	and	so	on.

Once	you	mentally	divide	your	tables	into	these	two	categories,	it	becomes
clear	that	facts	are	related	to	dimensions.	For	one	individual	product,	there	are
many	sales.	In	other	words,	there	is	a	relationship	involving	the	Sales	and	Product
tables,	where	Sales	is	on	the	many	side	and	Product	is	on	the	one	side.	If	you
design	this	schema,	putting	all	dimensions	around	a	single	fact	table,	you	obtain
the	typical	figure	of	a	star	schema,	as	shown	in	Figure	1-12	in	Power	Pivot’s
diagram	view.

FIGURE	1-12	A	star	schema	becomes	visible	when	you	put	the	fact	table	in	the
center	and	all	the	dimensions	around	it.

Star	schemas	are	easy	to	read,	understand,	and	use.	You	use	dimensions	to	slice
and	dice	the	data,	whereas	you	use	fact	tables	to	aggregate	numbers.	Moreover,
they	produce	a	small	number	of	entries	in	the	PivotTable	field	list.

	Note

Star	schemas	have	become	very	popular	in	the	data	warehouse
industry.	Today,	they	are	considered	the	standard	way	of	representing
analytical	models.

Because	of	their	nature,	dimensions	tend	to	be	small	tables,	with	fewer	than
1,000,000	rows—generally	in	the	order	of	magnitude	of	a	few	hundred	or
thousand.	Fact	tables,	on	the	other	hand,	are	much	larger.	They	are	expected	to
store	tens—if	not	hundreds	of	millions—of	rows.	Apart	from	this,	the	structure	of

star	schemas	is	so	popular	that	most	database	systems	have	specific	optimizations
that	are	more	effective	when	working	with	star	schemas.

	Tip

Before	reading	further,	spend	some	time	trying	to	figure	out	how	your
own	business	model	might	be	represented	as	a	star	schema.	You
don’t	need	to	build	the	perfect	star	schema	right	now,	but	it	is	useful
to	try	this	exercise,	as	it	is	likely	to	help	you	focus	on	a	better	way	to
build	fact	tables	and	dimensions.

It	is	important	to	get	used	to	star	schemas.	They	provide	a	convenient	way	to
represent	your	data.	In	addition,	in	the	business	intelligence	(BI)	world,	terms
related	to	star	schemas	are	used	very	often,	and	this	book	is	no	exception.	We
frequently	write	about	fact	tables	and	dimensions	to	differentiate	between	large
tables	and	smaller	ones.	For	example,	in	the	next	chapter,	we	will	cover	the
handling	of	header/detail	tables,	where	the	problem	is	more	generically	that	of
creating	relationships	between	different	fact	tables.	At	that	point,	we	will	take	for
granted	that	you	have	a	basic	understanding	of	the	difference	between	a	fact	table
and	a	dimension.
Some	important	details	about	star	schemas	are	worth	mentioning.	One	is	that

fact	tables	are	related	to	dimensions,	but	dimensions	should	not	have	relationships
among	them.	To	illustrate	why	this	rule	is	important	and	what	happens	if	you	don’t
follow	it,	suppose	we	add	a	new	dimension,	Geography,	that	contains	details
about	geographical	places,	like	the	city,	state,	and	country/region	of	a	place.	Both
the	Store	and	Customer	dimensions	can	be	related	to	Geography.	You	might	think
about	building	a	model	like	the	one	in	Figure	1-13,	shown	in	Power	Pivot’s
diagram	view.

FIGURE	1-13	The	new	dimension,	called	Geography,	is	related	to	both	the
Customer	and	Store	dimensions.

This	model	violates	the	rule	that	dimensions	cannot	have	relationships	between
them.	In	fact,	the	three	tables,	Customer,	Store,	and	Geography,	are	all	dimensions,
yet	they	are	related.	Why	is	this	a	bad	model?	Because	it	introduces	ambiguity.
Imagine	you	slice	by	city,	and	you	want	to	compute	the	amount	sold.	The	system

might	follow	the	relationship	between	Geography	and	Customer,	returning	the
amount	sold,	sliced	by	the	city	of	the	customer.	Or,	it	might	follow	the	relationship
between	Geography	and	Store,	returning	the	amount	sold	in	the	city	where	the
store	is.	As	a	third	option,	it	might	follow	both	relationships,	returning	the	sales
amount	sold	to	customers	of	the	given	city	in	stores	of	the	given	city.	The	data
model	is	ambiguous,	and	there	is	no	easy	way	to	understand	what	the	number	will
be.	Not	only	this	is	a	technical	problem,	it	is	also	a	logical	one.	In	fact,	a	user
looking	at	the	data	model	would	be	confused	and	unable	to	understand	the
numbers.	Because	of	this	ambiguity,	neither	Excel	nor	Power	BI	let	you	build	such
a	model.	In	further	chapters,	we	will	discuss	ambiguity	to	a	greater	extent.	For
now,	it	is	important	only	to	note	that	Excel	(the	tool	we	used	to	build	this

example)	deactivated	the	relationship	between	Store	and	Geography	to	make	sure
that	the	model	is	not	ambiguous.
You,	as	a	data	modeler,	must	avoid	ambiguity	at	all	costs.	How	would	you

resolve	ambiguity	in	this	scenario?	The	answer	is	very	simple.	You	must
denormalize	the	relevant	columns	of	the	Geography	table,	both	in	Store	and	in
Customer,	removing	the	Geography	table	from	the	model.	For	example,	you	could
include	the	ContinentName	columns	in	both	Store	and	in	Customer	to	obtain	the
model	shown	in	Figure	1-14	in	Power	Pivot’s	diagram	view.

FIGURE	1-14	When	you	denormalize	the	columns	from	Geography,	the	star
schema	shape	returns.

With	the	correct	denormalization,	you	remove	the	ambiguity.	Now,	any	user	will
be	able	to	slice	by	columns	in	Geography	using	the	Customer	or	Store	table.	In
this	case,	Geography	is	a	dimension	but,	to	be	able	to	use	a	proper	star	schema,
we	had	to	denormalize	it.
Before	leaving	this	topic,	it	is	useful	to	introduce	another	term	that	we	will	use

often:	snowflake.	A	snowflake	is	a	variation	of	a	star	schema	where	a	dimension
is	not	linked	directly	to	the	fact	table.	Rather,	it	is	linked	through	another
dimension.	You	have	already	seen	examples	of	a	snowflake;	one	is	in	Figure	1-15,
shown	in	Power	Pivot’s	diagram	view.

FIGURE	1-15	Product	Category,	Subcategory,	and	Product	form	a	chain	of
relationships	and	are	snowflaked.

Do	snowflakes	violate	the	rule	of	dimensions	being	linked	together?	In	some
sense,	they	do,	because	the	relationship	between	Product	Subcategory	and	Product
is	a	relationship	between	two	dimensions.	The	difference	between	this	example
and	the	previous	one	is	that	this	relationship	is	the	only	one	between	Product
Subcategory	and	the	other	dimensions	linked	to	the	fact	table	or	to	Product.	Thus,
you	can	think	of	Product	Subcategory	as	a	dimension	that	groups	different	products
together,	but	it	does	not	group	together	any	other	dimension	or	fact.	The	same,
obviously,	is	true	for	Product	Category.	Thus,	even	if	snowflakes	violate	the
aforementioned	rule,	they	do	not	introduce	any	kind	of	ambiguity,	and	a	data	model
with	snowflakes	is	absolutely	fine.

	Note

You	can	avoid	snowflakes	by	denormalizing	the	columns	from	the
farthest	tables	into	the	one	nearer	to	the	fact	table.	However,
sometimes	snowflakes	are	a	good	way	of	representing	your	data	and
—apart	from	a	small	performance	degradation—there	is	nothing
wrong	with	them.

As	you	will	see	throughout	this	book,	star	schemas	are	nearly	always	the	best
way	to	represent	your	data.	Yes,	there	are	some	scenarios	in	which	star	schemas
are	not	the	perfect	way	to	go.	Still,	whenever	you	work	with	a	data	model,
representing	it	with	a	star	schema	is	the	right	thing	to	do.	It	might	not	be	perfect,
but	it	will	be	near-to-perfect	enough	to	be	a	good	solution.

	Note

As	you	learn	more	about	data	modeling,	you	might	encounter	a
situation	in	which	you	think	it	is	best	to	deviate	from	star	schemas.
Don’t.	There	are	several	reasons	why	star	schemas	are	nearly	always
your	best	option.	Unfortunately,	most	of	these	reasons	can	be
appreciated	only	after	you	have	had	some	experience	in	data
modeling.	If	you	don’t	have	a	lot	of	experience,	just	trust	the	tens	of
thousands	of	BI	professionals	all	around	the	planet	who	know	that
star	schemas	are	nearly	always	the	best	option—no	matter	what.

Understanding	the	importance	of	naming	objects
When	you	build	your	data	model,	you	typically	load	data	from	a	SQL	Server
database	or	some	other	data	source.	Most	likely,	the	developer	of	the	data	source
decided	the	naming	convention.	There	are	tons	of	these	naming	conventions,	up	to
the	point	that	it	is	not	wrong	to	say	that	everybody	has	his	or	her	own	personal
naming	convention.
When	building	data	warehouses,	some	database	designers	prefer	to	use	Dim	as

a	prefix	for	dimensions	and	Fact	for	fact	tables.	Thus,	it	is	very	common	to	see
table	names	such	as	DimCustomer	and	FactSales.	Others	like	to	differentiate
between	views	and	physical	tables,	using	prefixes	like	Tbl	for	tables	and	Vw	for
views.	Still	others	think	names	are	ambiguous	and	prefer	to	use	numbers	instead,
like	Tbl_190_Sales.	We	could	go	on	and	on,	but	you	get	the	point:	There	are	many
standards,	and	each	one	has	pros	and	cons.

	Note

We	could	argue	whether	these	standards	make	any	sense	in	the
database,	but	this	would	go	outside	of	the	scope	of	this	book.	We	will
stick	to	discussing	how	to	handle	standards	in	the	data	model	that	you
browse	with	Power	BI	or	Excel.

You	do	not	need	to	follow	any	technical	standard;	only	follow	common	sense
and	ease	of	use.	For	example,	it	would	be	frustrating	to	browse	a	data	model
where	tables	have	silly	names,	like	VwDimCstmr	or	Tbl_190_FactShpmt.	These
names	are	strange	and	non-intuitive.	Still,	we	encounter	these	types	of	names	in
data	models	quite	a	lot.	And	we	are	talking	about	table	names	only.	When	it	comes

to	column	names,	the	lack	of	creativity	gets	even	more	extreme.	Our	only	word	of
advice	here	is	to	get	rid	of	all	these	names	and	use	readable	names	that	clearly
identify	the	dimension	or	the	fact	table.
We	have	built	many	analytical	systems	over	the	years.	Over	time,	we	have

developed	a	very	simple	set	of	rules	for	table	and	column	naming:
	Table	names	for	dimensions	should	consist	of	only	the	business	asset
name,	in	singular	or	plural	form	Thus,	customers	are	stored	in	a	table
called	Customer	or	Customers.	Products	are	stored	in	a	table	called	Product
or	Products.	(In	our	opinion,	singular	is	preferable	because	it	works	slightly
better	with	natural	language	queries	in	Power	BI.)
	If	the	business	asset	contains	multiple	words,	use	casing	to	separate	the
words	Thus,	product	categories	are	stored	in	ProductCategory,	and	the
country	of	shipment	might	be	CountryShip	or	CountryShipment.
Alternatively,	you	can	use	spaces	instead	of	casing—for	example,	using
table	names	like	Product	Category.	This	is	fine,	but	it	does	make	the	writing
of	DAX	code	a	bit	harder.	It	is	more	a	matter	of	personal	choice	than
anything	else.
	Table	names	for	facts	should	consist	of	the	business	name	for	the	fact,
which	is	always	plural	Thus,	sales	are	stored	in	a	table	named	Sales,	and
purchases,	as	you	might	imagine,	are	stored	in	a	table	named	Purchases.	By
using	plural	instead	of	singular,	when	you	look	at	your	model,	you	will
naturally	think	of	one	customer	(the	Customer	table)	with	many	sales	(the
Sales	table),	stating	and	enforcing	the	nature	of	the	one-to-many	relationship
whenever	you	look	at	the	tables.
	Avoid	names	that	are	too	long	Names	like
CountryOfShipmentOfGoodsWhenSoldByReseller	are	confusing.	Nobody
wants	to	read	such	a	long	name.	Instead,	find	good	abbreviations	by
eliminating	the	useless	words.
	Avoid	names	that	are	too	short	We	know	you	are	used	to	speaking	with
acronyms.	But	while	acronyms	might	be	useful	when	speaking,	they	are
unclear	when	used	in	reports.	For	example,	you	might	use	the	acronym	CSR
for	country	of	shipment	for	resellers,	but	that	will	be	hard	to	remember	for
anybody	who	does	not	work	with	you	all	day	long.	Remember:	Reports	are
meant	to	be	shared	with	a	vast	number	of	users,	many	of	whom	do	not
understand	your	acronyms.
	The	key	to	a	dimension	is	the	dimension	name	followed	by	Key	Thus,	the
primary	key	of	Customer	is	CustomerKey.	The	same	goes	for	foreign	keys.

You	will	know	something	is	a	foreign	key	because	it	is	stored	in	a	table	with
a	different	name.	Thus,	CustomerKey	in	Sales	is	a	foreign	key	that	points	to
the	Customer	table,	whereas	in	Customer	it	is	the	primary	key.

This	set	of	rules	is	very	short.	Anything	else	is	up	to	you.	You	can	decide	the
names	of	all	the	remaining	columns	by	following	the	same	common	sense.	A	well-
named	data	model	is	easy	to	share	with	anybody.	In	addition,	you	are	much	more
likely	to	find	errors	or	issues	in	the	data	model	if	you	follow	these	standard
naming	techniques.

	Tip

When	you	are	in	doubt	about	a	name,	ask	yourself,	“Will	somebody
else	be	able	to	understand	this	name?”	Don’t	think	you	are	the	only
user	of	your	reports.	Sooner	or	later,	you	will	want	to	share	a	report
with	somebody	else,	who	might	have	a	completely	different
background	than	yours.	If	that	person	will	be	able	to	understand	your
names,	then	you	are	on	the	right	track.	If	not,	then	it	is	time	to	re-think
the	names	in	your	model.

Conclusions
In	this	chapter,	you	learned	the	basics	of	data	modeling,	namely:

	A	single	table	is	already	a	data	model,	although	in	its	simplest	form.
	With	a	single	table,	you	must	define	the	granularity	of	your	data.	Choosing
the	right	granularity	makes	calculations	much	easier	to	author.
	The	difference	between	working	with	a	single	table	and	multiple	ones	is	that
when	you	have	multiple	tables,	they	are	joined	by	relationships.
	In	a	relationship,	there	is	a	one	side	and	a	many	side,	indicating	how	many
rows	you	are	likely	to	find	if	you	follow	the	relationship.	Because	one
product	has	many	sales,	the	Product	table	will	be	the	one	side,	and	the	Sales
table	will	be	the	many	side.
	If	a	table	is	the	target	of	a	relationship,	it	needs	to	have	a	primary	key,	which
is	a	column	with	unique	values	that	can	be	used	to	identify	a	single	row.	If	a
key	is	not	available,	then	the	relationship	cannot	be	defined.
	A	normalized	model	is	a	data	model	where	the	data	is	stored	in	a	compact
way,	avoiding	repetitions	of	the	same	value	in	different	rows.	This	structure
typically	increases	the	number	of	tables.

	A	denormalized	model	has	a	lot	of	repetitions	(for	example,	the	name	Red	is
repeated	multiple	times,	once	for	each	red	product),	but	has	fewer	tables.
	Normalized	models	are	used	for	OLTP,	whereas	denormalized	models	are
used	in	analytical	data	models.
	A	typical	analytical	model	differentiates	between	informational	assets
(dimensions)	and	events	(facts).	By	classifying	each	entity	in	the	model	as
either	a	fact	or	a	dimension,	the	model	is	built	in	the	form	of	a	star	schema.
Star	schemas	are	the	most	widely	used	architecture	for	analytical	models,
and	for	a	good	reason:	They	work	fine	nearly	always.

Chapter	2.	Using	header/detail	tables

Now	that	you	have	a	basic	understanding	of	the	concepts	of	data	modeling,	we	can
start	discussing	the	first	of	many	scenarios,	which	is	the	use	of	header/detail
tables.	This	scenario	happens	very	frequently.	By	themselves,	header/detail	tables
are	not	a	complex	model	to	use.	Nevertheless,	this	scenario	hides	some
complexities	whenever	you	want	to	mix	reports	that	aggregate	numbers	at	the	two
different	levels.
Examples	of	header/detail	models	include	invoices	with	their	lines	or	orders

with	their	lines.	Bills	of	materials	are	also	typically	modeled	as	header/detail
tables.	Another	example	would	be	if	you	need	to	model	teams	of	people.	In	this
case,	the	two	different	levels	would	be	the	team	and	the	people.
Header/detail	tables	are	not	to	be	confused	with	standard	hierarchies	of

dimensions.	Think,	for	example,	about	the	natural	hierarchy	of	a	dimension	that	is
created	when	you	have	products,	subcategories,	and	categories.	Although	there	are
three	levels	of	data,	this	is	not	a	header/detail	pattern.	The	header/detail	structure
is	generated	by	some	sort	of	hierarchical	structure	on	top	of	your	events—that	is,
on	top	of	your	fact	tables.	Both	an	order	and	its	lines	are	facts,	even	if	they	are	at
different	granularities,	whereas	products,	categories,	and	subcategories	are	all
dimensions.	To	state	it	in	a	more	formal	way,	header/detail	tables	appear
whenever	you	have	some	sort	of	relationship	between	two	fact	tables.

Introducing	header/detail
As	an	example,	we	created	a	header/detail	scenario	for	the	Contoso	database.	You
can	see	its	data	model	in	Figure	2-1.

FIGURE	2-1	SalesHeader	and	SalesDetail	comprise	a	header/detail	scenario.

Based	on	the	previous	chapter,	you	might	recognize	this	model	as	a	slightly
modified	star	schema.	In	fact,	if	you	look	at	SalesHeader	or	SalesDetail
individually,	with	their	respective	related	tables,	they	are	star	schemas.	However,
when	you	combine	them,	the	star	shape	is	lost	because	of	the	relationship	linking
SalesHeader	and	SalesDetail.	This	relationship	breaks	the	star	schema	rules
because	both	the	header	and	detail	tables	are	fact	tables.	At	the	same	time,	the
header	table	acts	as	a	dimension	for	the	detail.
At	this	point,	you	might	argue	that	if	we	consider	SalesHeader	a	dimension

instead	of	a	fact	table,	then	we	have	a	snowflake	schema.	Moreover,	if	we
denormalize	all	columns	from	Date,	Customer,	and	Store	in	SalesHeader,	we	can
re-create	a	perfect	star	schema.	However,	there	are	two	points	that	prevent	us
from	performing	this	operation.	First,	SalesHeader	contains	a	TotalDiscount
metric.	Most	likely,	you	will	aggregate	values	of	TotalDiscount	by	customer.	The
presence	of	a	metric	is	an	indicator	that	the	table	is	more	likely	to	be	a	fact	table
than	a	dimension.	The	second,	and	much	more	important,	consideration	is	that	it
would	be	a	modeling	error	to	mix	Customer,	Date,	and	Store	in	the	same
dimension	by	denormalizing	their	attributes	in	SalesOrderHeader.	This	is	because
these	three	dimensions	make	perfect	sense	as	business	assets	of	Contoso,	whereas
if	you	mix	all	their	attributes	into	a	single	dimension	to	rebuild	a	star	schema,	the

model	would	become	much	more	complex	to	browse.
As	you	will	learn	later	in	this	chapter,	for	such	a	schema,	the	correct	solution	is

not	to	mix	the	dimensions	linked	to	the	header	into	a	single,	new	dimension,	even
if	it	looks	like	a	nice	idea.	Instead,	the	best	choice	is	to	flatten	the	header	into	the
detail	table,	increasing	the	granularity.	There	will	be	more	on	this	later	in	the
chapter.

Aggregating	values	from	the	header
Apart	from	aesthetic	issues	(it	is	not	a	perfect	star	schema),	with	header/detail
models,	you	need	to	worry	about	performance	and,	most	importantly,	how	to
perform	the	calculations	at	the	right	granularity.	Let	us	analyze	the	scenario	in
more	detail.
You	can	compute	any	measure	at	the	detail	level	(such	as	the	sum	of	quantity

and	sum	of	sales	amount),	and	everything	works	fine.	The	problems	start	as	soon
as	you	try	to	aggregate	values	from	the	header	table.	You	might	create	a	measure
that	computes	the	discount	value,	stored	in	the	header	table,	with	the	following
code:
Click	here	to	view	code	image

DiscountValue	:=	SUM	(SalesHeader[TotalDiscount])

The	discount	is	stored	in	the	header	because	it	is	computed	over	the	whole
order	at	the	time	of	the	sale.	In	other	words,	the	discount	is	granted	over	the	entire
order	instead	of	being	applied	to	each	line.	For	this	reason,	it	is	saved	in	the
header	table.	The	DiscountValue	measure	works	correctly	as	long	as	you	slice	it
with	any	attribute	of	a	dimension	that	is	directly	linked	to	SalesHeader.	In	fact,	the
PivotTable	shown	in	Figure	2-2	works	just	fine.	It	slices	the	discount	by	continent
(the	column	in	Store,	linked	to	SalesHeader)	and	year	(the	column	in	Date,	again
linked	to	SalesHeader).

FIGURE	2-2	You	can	slice	discount	by	year	and	continent,	producing	this
PivotTable.

However,	as	soon	as	you	use	one	of	the	attributes	of	any	dimension	that	is	not

directly	related	to	SalesHeader,	the	measure	stops	working.	If,	for	example,	you
slice	by	the	color	of	a	product,	then	the	result	is	what	is	shown	in	Figure	2-3.	The
filter	on	the	year	works	fine,	exactly	as	it	did	in	the	previous	PivotTable.
However,	the	filter	on	the	color	repeats	the	same	value	for	each	row.	In	some
sense,	the	number	reported	is	correct,	because	the	discount	is	saved	in	the	header
table,	which	is	not	related	to	any	product.	Product	is	related	to	the	detail	table,
and	a	discount	saved	in	the	header	is	not	expected	to	be	filtered	by	product.

FIGURE	2-3	If	you	slice	the	discount	by	a	product	color,	the	same	number	is
repeated	on	each	row.

A	very	similar	issue	would	occur	for	any	other	value	stored	in	the	header	table.
For	example,	think	about	the	freight	cost.	The	cost	of	the	shipment	of	an	order	is
not	related	to	the	individual	products	in	the	order.	Instead,	the	cost	is	a	global	cost
for	the	shipment,	and	again,	it	is	not	related	to	the	detail	table.
In	some	scenarios,	this	behavior	is	correct.	Users	know	that	some	measures

cannot	simply	be	sliced	by	all	the	dimensions,	as	it	would	compute	inaccurate
values.	Nevertheless,	in	this	specific	case,	we	want	to	compute	the	average
discount	percentage	for	each	product	and	then	deduct	this	information	from	the
header	table.	This	is	a	bit	more	complicated	than	one	might	imagine.	This	is	due	to
the	data	model.
If	you	are	using	Power	BI	or	Analysis	Services	Tabular	2016	or	later,	then	you

have	access	to	bidirectional	filtering,	meaning	you	can	instruct	the	model	to
propagate	the	filter	on	SalesDetail	to	SalesHeader.	In	this	way,	when	you	filter	a
product	(or	a	product	color),	the	filter	will	be	active	on	both	SalesHeader	and
SalesDetail,	showing	only	the	orders	containing	a	product	of	the	given	color.
Figure	2-4	shows	the	model	with	bidirectional	filtering	activated	for	the
relationship	between	SalesHeader	and	SalesDetail.

FIGURE	2-4	If	bidirectional	filtering	is	available,	you	can	let	the	filter	propagate
in	both	directions	of	the	relationship.

If	you	work	with	Excel,	then	bidirectional	filtering	is	not	an	option	at	the	data-
model	level.	However,	you	can	obtain	the	same	result	by	modifying	the	measure
using	the	bidirectional	pattern	with	the	following	code.	(We’ll	talk	about	this	in
more	detail	in	Chapter	8,	“Many-to-many	relationships.”)
Click	here	to	view	code	image

DiscountValue	:=

CALCULATE	(

				SUM	(SalesHeader[TotalDiscount]),

				CROSSFILTER	(SalesDetail[Order	Number],	SalesHeader[Order	Number],	BOTH)

)

It	appears	that	a	small	change	in	the	data	model	(enabling	bidirectional	filtering
on	the	relationship)	or	in	the	formula	(using	the	bidirectional	pattern)	solves	the
issue.	Unfortunately,	however,	neither	of	these	measures	compute	a	meaningful
value.	To	be	precise,	they	compute	a	meaningful	value,	but	it	has	a	meaning	that	is
totally	different	from	what	you	would	expect.
Both	techniques	move	the	filter	from	SalesDetail	to	SalesHeader,	but	they	then

aggregate	the	total	discount	for	all	the	orders	that	contain	the	selected	products.
The	issue	is	evident	if	you	create	a	report	that	slices	by	brand	(which	is	an
attribute	of	Product,	indirectly	related	to	SalesHeader)	and	by	year	(which	is	an
attribute	of	Date,	directly	related	to	SalesHeader).	Figure	2-5	shows	an	example
of	this,	in	which	the	sum	of	the	highlighted	cells	is	much	greater	than	the	grand
total.

FIGURE	2-5	In	this	PivotTable,	the	sum	of	the	highlighted	cells	is	$458,265.70,
which	is	greater	than	the	grand	total.

The	issue	is	that,	for	each	brand,	you	are	summing	the	total	discount	of	the
orders	that	contain	at	least	one	product	of	that	brand.	When	an	order	contains
products	of	different	brands,	its	discount	is	counted	once	for	each	of	the	brands.
Thus,	the	individual	numbers	do	not	sum	at	the	grand	total.	At	the	grand	total,	you
get	the	correct	sum	of	discounts,	whereas	for	each	brand,	you	obtain	a	number	that
is	greater	than	what	is	expected.

	Info

This	is	an	example	of	a	wrong	calculation	that	is	not	so	easy	to	spot.
Before	we	proceed,	let	us	explain	exactly	what	is	happening.	Imagine
you	have	two	orders:	one	with	apples	and	oranges,	and	one	with
apples	and	peaches.	When	you	slice	by	product	using	bidirectional
filtering,	the	filter	will	make	both	orders	visible	on	the	row	with
apples,	so	the	total	discount	will	be	the	sum	of	the	two	orders.	When
you	slice	by	oranges	or	peaches,	only	one	order	will	be	visible.
Thus,	if	the	two	orders	have	a	discount	of	10	and	20,	respectively,
you	will	see	three	lines:	apples	30,	oranges	10,	and	peaches	20.	For
the	grand	total,	you	will	see	30,	which	is	the	total	of	the	two	orders.

It	is	important	to	note	that	by	itself,	the	formula	is	not	wrong.	In	the	beginning,
before	you	are	used	to	recognizing	issues	in	the	data	model,	you	tend	to	expect
DAX	to	compute	a	correct	number,	and	if	the	number	is	wrong,	you	might	think
there	is	an	error	in	the	formula.	This	is	often	the	case,	but	not	always.	In	scenarios
like	this	one,	the	problem	is	not	in	the	code,	but	in	the	model.	The	issue	here	is
that	DAX	computes	exactly	what	you	are	asking	for,	but	what	you	are	asking	for	is
not	what	you	want.
Changing	the	data	model	by	simply	updating	the	relationship	is	not	the	right	way

to	go.	We	need	to	find	a	different	path	to	the	solution.	Because	the	discount	is
stored	in	the	header	table	as	a	total	value,	you	can	only	aggregate	that	value,	and
this	is	the	real	source	of	the	error.	What	you	are	missing	is	a	column	that	contains
the	discount	for	the	individual	line	of	the	order	so	that	when	you	slice	by	one	of
the	attributes	of	a	product,	it	returns	a	correct	value.	This	problem	is	again	about
granularity.	If	you	want	to	be	able	to	slice	by	product,	you	need	the	discount	to	be
at	the	order-detail	granularity.	Right	now,	the	discount	is	at	the	order	header
granularity,	which	is	wrong	for	the	calculation	you	are	trying	to	build.
At	the	risk	of	being	pedantic,	let	us	highlight	an	important	point:	You	do	not

need	the	discount	value	at	the	product	granularity,	but	at	the	SalesDetail
granularity.	The	two	granularities	might	be	different—	for	example,	in	case	you
have	two	rows	in	the	detail	table	that	belong	to	the	same	order	and	have	the	same
product	ID.	How	can	you	obtain	such	a	result?	It	is	easier	than	you	might	think,
once	you	recognize	the	problem.	In	fact,	you	can	compute	a	column	in
SalesHeader	that	stores	the	discount	as	a	percentage	instead	of	an	absolute	value.
To	perform	this,	you	need	to	divide	the	total	discount	by	the	total	of	the	order.
Because	the	total	of	the	order	is	not	stored	in	the	SalesHeader	table	in	our	model,

you	can	compute	it	on	the	fly	by	iterating	over	the	related	detail	table.	You	can	see
this	in	the	following	formula	for	a	calculated	column	in	SalesHeader:
Click	here	to	view	code	image

SalesHeader[DiscountPct]	=

DIVIDE	(

				SalesHeader[TotalDiscount],

				SUMX	(

								RELATEDTABLE	(SalesDetail),

								SalesDetail[Unit	Price]	*	SalesDetail[Quantity]

)

)

Figure	2-6	shows	the	result,	with	the	SalesHeader	table	with	the	new	column
formatted	as	a	percentage	to	make	its	meaning	easy	to	understand.

FIGURE	2-6	The	DiscountPct	column	computes	the	discount	percentage	of	the
order.

Once	you	have	this	column,	you	know	that	each	of	the	individual	lines	of	the
same	order	has	the	same	discount	percentage.	Thus,	you	can	compute	the	discount
amount	at	the	individual	line	level	by	iterating	over	each	row	of	the	SalesDetail
table.	You	can	then	compute	the	discount	of	that	line	by	multiplying	the	header
discount	percentage	by	the	current	sales	amount.	For	example,	the	following	code
replaces	the	previous	version	of	the	DiscountValue	measure:
Click	here	to	view	code	image

[DiscountValueCorrect]	=

SUMX	(

				SalesDetail,

				RELATED	(SalesHeader[DiscountPct])	*	SalesDetail[Unit	Price]	*	SalesDetail[Quantity]

)

It	is	also	worth	noting	that	this	formula	no	longer	needs	the	relationship
between	SalesHeader	and	SalesDetail	to	be	bidirectional.	In	the	demo	file,	we
left	it	bidirectional	because	we	wanted	to	show	both
values	together.	In	fact,	in	Figure	2-7,	you	can	see	the	two	measures	side	by	side
in	a	PivotTable.	You	will	also	see	that	DiscountValueCorrect	reports	a	slightly
lower	number,	which	sums	correctly	at	the	grand-total	level.

FIGURE	2-7	Having	the	two	measures	side	by	side	shows	the	difference	between
them.	Moreover,	the	correct	value	produces	a	sum	that	is	identical	to	the	grand

total,	as	expected.

Another	option,	with	a	simpler	calculation,	is	to	create	a	calculated	column	in
SalesDetail	that	contains	the	following	expression,	which	is	the	discount	value	for
the	individual	row	that	is	precomputed	in	SalesDetail:
Click	here	to	view	code	image

SalesDetail[LineDiscount]	=

				RELATED	(SalesHeader[DiscountPct])	*

				SalesDetail[Unit	Price]	*

				SalesDetail[Quantity]

In	this	case,	you	can	easily	compute	the	discount	value	by	summing	the
LineDiscount	column,	which	already	contains	the	correct	discount	allocated	at	the

individual	row	level.
This	approach	is	useful	because	it	shows	more	clearly	what	we	did.	We

changed	the	data	model	by	denormalizing	the	discount	from	the	SalesHeader	table
into	the	SalesDetail	table.	Figure	2-8	(which	presents	the	diagram	view)	shows
the	two	fact	tables	after	we	added	the	LineDiscount	calculated	column.
SalesHeader	no	longer	contains	any	value	that	is	directly	aggregated	in	a	measure.
The	only	metrics	in	the	SalesHeader	table	are	TotalDiscount	and	DiscountPct,
which	are	used	to	compute	LineDiscount	in	the	SalesDetail	table.	These	two
columns	should	be	hidden	because	they	are	not	useful	for	analysis	unless	you	want
to	use	DiscountPct	to	slice	your	data.	In	that	case,	it	makes	sense	to	leave	it
visible.

FIGURE	2-8	The	DiscountPct	and	TotalDiscount	columns	are	used	to	compute
LineDiscount.

Let	us	now	draw	some	conclusions	about	this	model.	Think	about	this	carefully.
Now	that	the	metric	that	was	present	in	SalesHeader	is	denormalized	in
SalesDetail,	you	can	think	of	SalesHeader	as	being	a	dimension.	Because	it	is	a
dimension	that	has	relationships	with	other	dimensions,	we	have	essentially
transformed	the	model	into	a	snowflake,	which	is	a	model	where	dimensions	are
linked	to	the	fact	table	through	other	dimensions.	Snowflakes	are	not	the	perfect
choice	for	performance	and	analysis,	but	they	work	just	fine	and	are	valid	from	a
modeling	point	of	view.	In	this	case,	a	snowflake	makes	perfect	sense	because	the
different	dimensions	involved	in	the	relationships	are,	one	by	one,	operational
assets	of	the	business.	Thus,	even	if	it	is	not	very	evident	in	this	example,	we

solved	the	problem	by	changing	the	data	model	to	make	it	simpler.
Before	leaving	this	example,	let	us	summarize	what	we	have	learned:
	In	header/detail	models,	the	header	table	acts	as	both	a	dimension	and	a	fact
table	at	the	same	time.	It	is	a	dimension	to	slice	the	detail,	and	it	is	a	fact
table	when	you	need	to	summarize	values	at	the	header	granularity.
	If	you	summarize	values	from	the	header,	any	filters	from	dimensions	linked
to	the	detail	are	not	applied	unless	you	activate	bidirectional	filtering	or	you
use	the	many-to-many	pattern.
	Both	bidirectional	filtering	and	the	bidirectional	DAX	pattern	summarize	the
values	at	the	header	granularity,	leading	to	totals	that	do	not	sum.	This	might
or	might	not	be	an	issue.	In	this	example,	it	was	an	issue	and	we	had	to	fix	it.
	To	fix	the	problem	of	additivity,	you	can	move	the	total	values	stored	in	the
header	table	by	allocating	them	as	percentages	to	the	detail	table.	Once	the
data	is	allocated	to	the	detail	table,	it	can	be	easily	summed	and	sliced	by
any	dimension.	In	other	words,	you	denormalize	the	value	at	the	correct
granularity	to	make	the	model	easier	to	use.

A	seasoned	data	modeler	would	have	spotted	the	problem	before	building	the
measure.	How?	Because	the	model	contained	a	table	that	was	neither	a	fact	table
nor	a	dimension,	as	we	saw	at	the	beginning.	Whenever	you	cannot	easily	tell
whether	a	table	is	used	to	slice	or	to	aggregate,	then	you	know	that	the	danger	of
complex	calculations	is	around	the	corner.

Flattening	header/detail
In	the	previous	example,	we	denormalized	a	single	value	(the	discount)	from	the
header	to	the	detail	by	first	computing	it	as	a	percentage	on	the	header	and	then
moving	the	value	from	the	header	to	the	detail.	This	operation	can	be	moved
forward	for	all	the	other	columns	in	the	header	table,	like	StoreKey,
PromotionKey,	CustomerKey,	and	so	on.	This	extreme	denormalization	is	called
flattening	because	you	move	from	a	model	with	many	tables	(two,	in	our	case)	to
one	with	a	single	table	containing	all	the	information.
The	process	of	flattening	a	model	is	typically	executed	before	the	data	is	loaded

into	the	model,	via	SQL	queries	or	M	code,	using	the	query	editor	in	Excel	or
Power	BI	Desktop.	If	you	are	loading	data	from	a	data	warehouse,	then	it	is	very
likely	that	this	process	of	flattening	already	happened	before	the	data	was	moved
to	the	data	warehouse.	However,	we	think	it	is	useful	to	see	the	differences
between	querying	and	using	a	flat	model	against	a	structured	one.

	Warning

In	the	example	we	used	for	this	section,	we	did	something	weird.	The
original	model	was	already	flattened.	On	top	of	this,	for	educational
purposes,	we	built	a	structured	model	with	a	header/detail.	Later,	we
used	M	code	in	Power	BI	Desktop	to	rebuild	the	original	flat
structure.	We	did	it	to	demonstrate	the	process	of	flattening.	Of
course,	in	the	real	world,	we	would	have	loaded	the	flat	model
straight	in,	avoiding	this	complex	procedure.

The	original	model	is	the	one	previously	shown	in	Figure	2-1.	Figure	2-9
shows	the	flattened	model,	which	is	basically	a	pure	star	schema	with	all	the
columns	from	SalesHeader	denormalized	in	Sales.

FIGURE	2-9	Once	flattened,	the	model	again	becomes	a	pure	star	schema.

The	following	steps	are	carried	out	in	the	query	that	loads	the	Sales	table:
1.	We	joined	SalesHeader	and	SalesDetail	together	based	on	Order	Number,
and	we	added	the	related	columns	of	Sales	Header	to	Sales.

2.	We	created	a	new	hidden	query	that	computes,	out	of	Sales	Detail,	the	total
order,	and	we	joined	this	query	with	Sales	to	retrieve	the	total	order.

3.	We	added	a	column	that	computes	the	line	discount	the	same	way	we	did	it

in	the	previous	example.	This	time,	however,	we	used	M	code	instead	of
DAX.

When	these	three	steps	are	complete,	you	end	up	with	a	perfect	star	schema	that
offers	all	the	advantages	of	a	star	schema.	Flattening	foreign	keys	to	dimensions,
like	CustomerKey	and	OrderDateKey,	is	straightforward	because	you	simply
make	a	copy	of	the	value.	However,	flattening	metrics	like	the	discount	typically
requires	some	kind	of	reallocation,	as	we	did	in	this	example	by	allocating	the
discount	as	the	same	percentage	on	all	the	lines.	(In	other	words,	it	is	allocated
using	the	line	amount	as	the	allocation’s	weight.)
The	only	drawback	of	this	architecture	is	that	whenever	you	need	to	compute

values	based	on	columns	that	were	originally	stored	in	the	header,	you	need	to	pay
attention.	Let	us	elaborate	on	this.	If	you	wanted	to	count	the	number	of	orders	in
the	original	model,	you	could	easily	create	a	measure	like	the	following	one:
Click	here	to	view	code	image

NumOfOrders	:=	COUNTROWS	(SalesHeader)

This	measure	is	very	simple.	It	basically	counts	how	many	rows	are	visible,	in
the	current	filter	context,	in	the	SalesHeader	table.	It	worked	because,	for
SalesHeader,	there	is	a	perfect	identity	between	the	orders	and	rows	in	the	table.
For	each	order,	there	is	a	single	line	in	the	table.	Thus,	counting	the	rows	results
in	a	count	of	the	orders.
When	using	the	flattened	model,	on	the	other	hand,	this	identity	is	lost.	If	you

count	the	number	of	rows	in	Sales	in	the	model	in	Figure	2-9,	you	compute	the
number	of	order	lines,	which	is	typically	much	greater	than	the	number	of	orders.
In	the	flat	model,	to	compute	the	number	of	orders,	you	need	to	compute	a	distinct
count	of	the	Order	Number	column,	as	shown	in	the	following	code:
Click	here	to	view	code	image

NumOfOrders	:=	DISTINCTCOUNT	(Sales[Order	Number]

)

Obviously,	you	should	use	the	same	pattern	for	any	attribute	moved	from	the
header	to	the	flat	table.	Because	the	distinct	count	function	is	very	fast	in	DAX,
this	is	not	a	typical	issue	for	medium-sized	models.	(It	might	be	a	problem	if	you
have	very	large	tables,	but	that	is	not	the	typical	size	of	self-service	BI	models.)
Another	detail	that	we	already	discussed	is	the	allocation	of	values.	When	we

moved	the	total	discount	of	the	order	from	the	header	to	the	individual	lines,	we
allocated	it	using	a	percentage.	This	operation	is	needed	to	enable	you	to

aggregate	values	from	the	lines	and	still	obtain	the	same	grand	total,	which	you
might	need	to	do	later.	The	allocation	method	can	be	different	depending	on	your
specific	needs.	For	example,	you	might	want	to	allocate	the	freight	cost	based	on
the	weight	of	the	item	being	sold	instead	of	equally	allocating	it	to	all	the	order
lines.	If	this	is	the	case,	then	you	will	need	to	modify	your	queries	in	such	a	way
that	allocation	happens	in	the	right	way.
On	the	topic	of	flattened	models,	here	is	a	final	note	about	performance.	Most

analytical	engines	(including	SQL	Server	Analysis	Services,	hence	Power	BI	and
Power	Pivot)	are	highly	optimized	for	star	schemas	with	small	dimensions	and
large	fact	tables.	In	the	original,	normalized	model,	we	used	the	sales	header	as	a
dimension	to	slice	the	sales	detail.	In	doing	this,	however,	we	used	a	potentially
large	table	(sales	order	header)	as	a	dimension.	As	a	rule	of	thumb,	dimensions
should	contain	fewer	than	100,000	rows.	If	they	grow	larger,	you	might	start	to
notice	some	performance	degradation.	Flattening	sales	headers	into	their	details	is
a	good	option	to	reduce	the	size	of	dimensions.	Thus,	from	the	performance	point
of	view,	flattening	is	nearly	always	a	good	option.

Conclusions
This	chapter	started	looking	at	different	options	to	build	a	data	model.	As	you
have	learned,	the	same	piece	of	information	can	be	stored	in	multiple	ways	by
using	tables	and	relationships.	The	information	stored	in	the	model	is	identical.
The	only	difference	is	the	number	of	tables	and	the	kind	of	relationships	that	link
them.	Nevertheless,	choosing	the	wrong	model	makes	the	calculation	much	more
complex,	which	means	the	numbers	will	not	aggregate	in	the	expected	way.
Another	useful	lesson	from	this	chapter	is	that	granularity	matters.	The	discount

as	an	absolute	value	could	not	be	aggregated	when	slicing	by	dimensions	linked	to
the	line	order.	Once	transformed	into	a	percentage,	it	became	possible	to	compute
the	line	discount,	which	aggregates	nicely	over	any	dimension.

Chapter	3.	Using	multiple	fact	tables

In	the	previous	chapter,	you	learned	how	to	handle	a	scenario	where	there	are	two
fact	tables	related	to	each	other:	header	and	detail	tables.	You	saw	how	the	best
option	to	obtain	a	simple	data	model	is	modifying	it	to	make	it	more	like	a	star
schema,	which	makes	calculations	much	easier	to	perform.
This	chapter	moves	one	step	further	to	cover	a	scenario	where	you	have

multiple	fact	tables	that	are	not	related	to	each	other.	This	is	a	very	common
occurrence.	Think,	for	example,	of	sales	and	purchases.	Both	sales	and	purchases
are	facts	involving	some	common	assets	(products,	for	instance)	and	some
unrelated	ones	(such	as	customers	for	sales	and	suppliers	for	purchases).
In	general,	using	multiple	fact	tables	is	not	an	issue	if	the	model	is	correctly

designed	and	everything	works	fine.	The	scenario	becomes	more	challenging
when	the	fact	tables	are	not	correctly	related	to	intermediate	dimensions,	as
shown	in	the	first	examples,	or	when	you	need	to	create	cross-filters	between	the
fact	tables.	The	latter	is	a	technique	you	will	learn	in	this	chapter.

Using	denormalized	fact	tables
The	first	example	we	look	at	is	that	of	having	two	fact	tables	that,	because	of	an
excessive	level	of	denormalization,	are	impossible	to	relate	to	each	other.	As	you
will	learn,	the	solution	is	very	simple:	You	re-create	a	star	schema	out	of	the
unrelated	tables	to	restore	proper	functionality	of	the	model.
For	this	demo,	we	start	with	a	very	simple	data	model	that	contains	only	two

tables:	Sales	and	Purchases.	They	have	nearly	the	same	structure,	and	they	are
completely	denormalized,	meaning	that	all	information	is	stored	in	the	tables.
They	have	no	relationships	with	dimensions.	This	model	is	shown	in	Figure	3-1.

FIGURE	3-1	The	Sales	and	Purchases	tables,	when	completely	denormalized,	do
not	have	any	relationship.

This	is	a	common	scenario	when	you	want	to	merge	two	queries	that	you	have
already	used	for	different	purposes.	Each	of	these	two	tables,	by	themselves,	are
perfectly	good	candidates	to	perform	analysis	with	an	Excel	PivotTable.	The
problem	arises	when	you	want	to	merge	the	two	tables	into	a	single	model	and
perform	an	analysis	by	using	numbers	gathered	from	the	two	tables	together.
Let	us	consider	an	example.	Suppose	you	define	two	measures,	Purchase

Amount	and	Sales	Amount,	with	the	following	DAX	code:
Click	here	to	view	code	image

Purchase	Amount	:=	SUMX	(Purchases,	Purchases[Quantity]	*	Purchases[Unit	Cost])

Sales	Amount				:=	SUMX	(Sales,	Sales[Quantity]	*	Sales[Unit	Price])

You	are	interested	in	looking	at	the	sales	and	purchase	amount	in	a	single	report
and	you	want	to	perform	a	computation	on	these	two	measures.	Unfortunately,	this
is	not	as	simple	as	it	might	seem.	For	example,	if	you	put	the	manufacturer	from
Purchases	on	the	rows	of	a	PivotTable	and	both	measures	in	the	values,	you	obtain
the	result	shown	in	Figure	3-2.	There,	the	value	of	Sales	Amount	is	clearly	wrong,
repeating	itself	for	all	the	rows.

FIGURE	3-2	The	Sales	Amount	and	Purchase	Amount	measures	in	the	same
PivotTable	produce	the	wrong	results.

What	is	happening	is	that	the	filter	created	by	the	Manufacturer	column	in	the
Purchases	table	is	active	on	that	table	only.	It	cannot	reach	the	Sales	table	because
there	are	no	relationships	between	the	two	tables.	Moreover,	you	cannot	create	a
relationship	between	the	two	tables	because	there	is	no	column	suitable	for
building	such	a	relationship.	As	you	might	remember,	to	create	a	relationship,	the
column	used	needs	to	be	the	primary	key	in	the	target	table.	In	this	case,	the
product	name	is	not	a	key	in	either	of	the	two	tables	because	it	has	many
repetitions	in	both.	To	be	a	key,	the	column	must	be	unique.
You	can	easily	check	this	by	trying	to	create	the	relationship.	When	you	do,	you

will	receive	an	error	message	stating	that	the	relationship	cannot	be	created.
As	is	often	the	case,	you	can	solve	this	problem	by	writing	some	complex	DAX

code.	If	you	decide	to	use	columns	from	Purchases	to	perform	the	filter,	you	can
rewrite	Sales	Amount	in	such	a	way	that	it	detects	the	filters	coming	from
Purchases.	The	following	code	is	for	a	version	of	Sales	Amount	that	senses	the
filter	on	the	manufacturer:
Click	here	to	view	code	image

Sales	Amount	Filtered	:=

CALCULATE	(

				[Sales	Amount],

				INTERSECT	(VALUES	(Sales[BrandName]),	VALUES	(Purchases[BrandName]))

)

Using	the	INTERSECT	function,	this	measure	computes	the	set	of

Sales[BrandName]	that	exists	in	the	current	selection	of	Purchases[BrandName].
As	a	result,	any	filter	on	Purchases[BrandName]	will	be	moved	to	a	filter	on
Sales[BrandName]	to	effectively	filter	the	Sales	table.	Figure	3-3	shows	the
measure	in	action.

FIGURE	3-3	Sales	Amount	Filtered	uses	the	filter	from	the	Purchases	table	to
filter	the	Sales	table.

Even	though	it	works,	this	measure	is	not	an	optimal	solution	for	the	following
reasons:

	The	current	version	works	with	a	filter	on	the	brand	name,	but	if	you	must
use	different	columns,	you	need	to	add	them	all	as	separate	INTERSECT
statements	inside	the	CALCULATE	statement.	This	makes	the	formula
complex.
	The	performance	is	not	optimal	because	DAX	generally	works	better	with
relationships	than	with	filters	created	with	CALCULATE.
	If	you	have	many	measures	that	aggregate	values	from	Sales,	all	of	them
need	to	follow	the	same	complex	pattern.	This	negatively	affects	the
maintainability	of	the	solution.

Just	to	give	you	an	idea	of	how	complex	the	formula	would	become	if	you
added	all	the	product	columns	to	the	filter,	consider	the	following	code,	in	which
we	expanded	the	previous	pattern	to	all	the	relevant	columns:
Click	here	to	view	code	image

Sales	Amount	Filtered	:=

CALCULATE	(

				[Sales	Amount],

				INTERSECT	(VALUES	(Sales[BrandName]),	VALUES	(Purchases[BrandName])),

				INTERSECT	(VALUES	(Sales[ColorName]),	VALUES	(Purchases[ColorName])),

				INTERSECT	(VALUES	(Sales[Manufacturer]),	VALUES	(Purchases[Manufacturer])),

				INTERSECT	(

								VALUES	(Sales[ProductCategoryName]),

								VALUES	(Purchases[ProductCategoryName])

),

				INTERSECT	(

								VALUES	(Sales[ProductSubcategoryName]),

								VALUES	(Purchases[ProductSubcategoryName])

)

)

This	code	is	error-prone	and	needs	a	lot	of	effort	to	maintain	it	over	time.	If,	for
example,	you	increase	the	granularity	of	the	tables	by	adding	a	column,	then	you
will	need	to	iterate	over	all	the	measures	and	fix	them,	adding	the	new
INTERSECT	for	the	newly	introduced	column.	A	better	option	involves	updating
the	data	model.
To	write	simpler	code,	you	must	modify	the	data	model	and	transform	it	into	a

star	schema.	Everything	would	be	much	easier	with	a	data	structure	like	the	one	in
Figure	3-4,	where	we	added	a	Product	dimension	that	is	capable	of	filtering	both
the	Sales	and	Purchases	tables.	Even	if	it	does	not	look	like	it,	this	model	is	a
perfect	star	schema,	with	two	fact	tables	and	a	single	dimension.

FIGURE	3-4	With	a	Product	dimension,	the	data	model	becomes	much	easier	to
use.

	Note

We	hid	the	columns	that	have	been	normalized	in	the	Product	table.

This	makes	it	impossible	for	users	to	use	one	of	those	columns	in	a
report,	as	they	would	not	be	able	to	filter	both	tables.

To	build	such	a	data	model,	you	typically	face	the	following	two	problems:
	You	need	a	source	for	the	Product	table,	and	often	you	do	not	have	access	to
the	original	tables.
	The	Product	table	needs	a	key	to	make	it	the	target	of	a	relationship.

The	first	problem	is	very	simple	to	solve.	If	you	have	access	to	the	original
Product	table,	you	can	create	the	dimension	from	there	by	loading	the	data	into	the
model.	If,	on	the	other	hand,	you	cannot	load	the	original	Product	table	from	the
database,	then	you	can	create	a	technical	one	by	using	a	Power	Query
transformation	that	loads	both	Sales	and	Purchases,	performs	a	union	of	the	two
tables,	and	finally	removes	duplicates.	The	following	is	the	M	code	that	does	the
trick:
Click	here	to	view	code	image

let

				SimplifiedPurchases	=	Table.RemoveColumns(

								Purchases,

								{"Quantity",	"Unit	cost",	"Date"}

),

				SimplifiedSales	=	Table.RemoveColumns(

								Sales,

								{"Quantity",	"Unit	Price",	"Date"}

),

				ProductColumns	=	Table.Combine	({	SimplifiedPurchases,	SimplifiedSales	}),

				Result	=	Table.Distinct	(ProductColumns)

in

				Result

As	you	can	see,	the	M	code	first	prepares	two	local	tables,
SimplifiedPurchases	and	SimplifiedSales,	which	contain	only	the	relevant
columns	from	Product	and	remove	the	unwanted	ones.	Then	it	combines	the	two
tables	by	adding	the	rows	of	SimplifiedSales	to	SimplifiedPurchases.	Finally,	it
retrieves	only	the	distinct	values,	resulting	in	a	table	with	unique	products.

	Note

You	can	obtain	the	very	same	result	with	the	query	editor	in	either

Excel	or	Power	BI	Desktop.	You	create	two	queries	that	remove	the
quantity	and	unit	price	from	the	original	sources,	and	then	you	merge
them	into	a	single	query	by	using	the	union	operator.	The	details	of
how	to	perform	this	operation	are	beyond	the	scope	of	this	book,
however.	We	are	focused	on	data	modeling	more	than	on	user-
interface	details.

To	create	the	technical	dimension,	you	must	combine	the	two	queries	with	Sales
and	Purchases.	It	is	possible	that	a	given	product	exists	in	only	one	of	these	two
tables.	If	you	then	retrieve	the	distinct	values	from	only	one	of	the	two	queries,	the
result	will	be	a	partial	dimension,	which	might	produce	incorrect	results	when
used	in	the	model.
After	you	load	the	Product	dimension	in	the	model,	you	still	must	create

relationships.	In	this	case,	you	have	the	option	of	using	the	product	name	as	the
column	to	create	the	relationship	because	the	product	name	is	unique.	In	different
scenarios,	such	as	when	you	don’t	have	a	suitable	primary	key	for	the	intermediate
dimension,	you	might	be	in	trouble.	If	your	original	tables	do	not	contain	product
names,	then	you	cannot	create	the	relationship	with	the	product.	For	example,	if
you	have	the	product	category	and	product	subcategory,	but	no	product	name,	then
you	must	create	dimensions	at	the	degree	of	granularity	that	is	available.	You
would	need	a	dimension	for	the	product	category	and	another	dimension	for	the
product	subcategory,	which	you	obtain	by	replicating	the	same	technique	shown
before—only	this	time	it	is	for	different	tables.
As	is	often	the	case,	these	kinds	of	transformations	are	better	done	before	the

data	is	loaded	into	the	model.	If	you	are	loading	data	from	a	SQL	Server	database,
for	example,	you	can	easily	build	SQL	queries	that	perform	all	these	operations
for	you,	obtaining	a	simpler	analytical	model.
Before	leaving	this	topic,	it	is	worth	noting	that	the	same	result	can	be	obtained

in	Power	BI	by	using	calculated	tables.	Calculated	tables	are	not	available	in
Excel	at	the	time	of	this	writing,	but	they	are	available	in	Power	BI	and	in	SQL
Server	Analysis	Services	2016.	The	following	code	creates	a	calculated	table	that
contains	the	product	dimension,	and	it	is	even	simpler	than	the	M	code:
Click	here	to	view	code	image

Products	=

DISTINCT	(

				UNION	(

								ALL	(

												Sales[ProductName],

												Sales[ColorName],

												Sales[Manufacturer],

												Sales[BrandName],

												Sales[ProductCategoryName],

												Sales[ProductSubcategoryName]

),

								ALL	(

												Purchases[ProductName],

												Purchases[ColorName],

												Purchases[Manufacturer],

												Purchases[BrandName],

												Purchases[ProductCategoryName],

												Purchases[ProductSubcategoryName]

)

)	

)

This	calculated	table	performs	two	ALL	operations	on	product	columns	from
Sales	and	Purchases,	reducing	the	number	of	columns	and	computing	the	distinct
combinations	of	the	required	data.	Then	it	uses	UNION	to	merge	them	together.
Finally,	it	uses	DISTINCT	to	remove	further	duplicates,	which	are	likely	to
appear	because	of	the	UNION	function.

	Note

The	choice	between	using	M	or	DAX	code	is	entirely	up	to	you	and
your	personal	taste.	There	are	no	relevant	differences	between	the
two	solutions.

Once	again,	the	correct	solution	to	the	model	is	to	restore	a	star	schema.	This
simple	concept	bears	frequent	repetition:	Star	schemas	are	good,	but	everything
else	might	be	bad.	If	you	are	facing	a	modeling	problem,	before	doing	anything
else,	ask	yourself	if	you	can	rebuild	your	model	to	move	toward	a	star	schema.	By
doing	this,	you	will	likely	go	in	the	right	direction.

Filtering	across	dimensions
In	the	previous	example,	you	learned	the	basics	of	multiple	dimension	handling.

There,	you	had	two	over-denormalized	dimensions	and,	to	make	the	model	a
better	one,	you	had	to	revert	to	a	simpler	star	schema.	In	this	next	example,	we
analyze	a	different	scenario,	again	using	Sales	and	Purchases.
You	want	to	analyze	the	purchases	of	only	the	products	sold	during	a	given

period—or,	more	generally,	the	products	that	satisfy	a	given	selection.	You
learned	in	the	previous	section	that	if	you	have	two	fact	tables,	the	best	way	to
model	the	scenario	is	to	relate	them	to	dimensions.	That	would	give	you	the	ability
to	use	a	single	dimension	to	filter	both.	Thus,	the	starting	scenario	is	the	one
shown	in	Figure	3-5.

FIGURE	3-5	In	this	model,	two	fact	tables	are	related	to	two	dimensions.

Using	this	model	and	two	basic	measures,	you	can	easily	build	a	report	like	the
one	shown	in	Figure	3-6,	where	you	can	see	both	the	sales	and	purchases	divided
by	brand	and	year.

FIGURE	3-6	In	this	simple	star	schema,	sales	and	purchases	divided	by	year	and
brand	are	computed	easily.

A	more	difficult	calculation	is	to	show	the	number	of	purchases	for	only	the
products	that	are	being	sold.	In	other	words,	you	want	to	use	Sales	as	a	filter	to
further	refine	the	products	so	that	any	other	filter	imposed	on	sales	(the	date,	for
example)	restricts	the	list	of	products	for	which	you	are	computing	purchases.
There	are	different	approaches	to	handling	this	scenario.	We	will	show	you	some
of	them	and	discuss	the	advantages	and	disadvantages	of	each	solution.
If	you	have	bidirectional	filtering	available	in	your	tool	(at	the	time	of	this

writing,	bidirectional	filtering	is	available	in	Power	BI	and	SQL	Server	Analysis
Services,	but	not	in	Excel),	you	might	be	tempted	to	change	the	data	model	that
enables	bidirectional	filtering	on	Sales	versus	Product	so	that	you	see	only	the
products	sold.	Unfortunately,	to	perform	this	operation,	you	must	disable	the
relationship	between	Product	and	Purchases,	as	shown	in	Figure	3-7.	Otherwise,
you	would	end	up	with	an	ambiguous	model,	and	the	engine	would	refuse	to	make
all	the	relationships	bidirectional.

FIGURE	3-7	To	enable	bidirectional	filtering	between	the	Sales	and	Product
tables,	you	must	disable	the	relationship	between	Product	and	Purchases.

	Info

The	DAX	engine	refuses	to	create	any	ambiguous	model.	You	will
learn	more	about	ambiguous	models	in	the	next	section.

If	you	follow	the	filtering	options	of	this	data	model,	you	will	quickly	discover
that	it	does	not	solve	the	problem.	If	you	place	a	filter	on	the	Date	table,	for
example,	the	filter	will	propagate	to	Sales,	then	to	Product	(because	bidirectional
filtering	is	enabled),	but	it	will	stop	there,	without	having	the	option	of	filtering
Purchases.	If	you	enable	bidirectional	filtering	on	Date,	too,	then	the	data	model

will	not	show	the	purchases	of	products	sold.	Instead,	it	will	show	the	purchases
of	any	product	made	on	the	dates	where	any	of	the	selected	products	were	sold,
becoming	even	less	intuitive.	Bidirectional	filtering	is	a	powerful	feature,	but	it	is
not	an	option	in	this	case	because	you	want	finer	control	over	the	way	the	filtering
happens.
The	key	to	solve	this	scenario	is	to	understand	the	flow	of	filtering.	Let	us	start

from	the	Date	table	and	revert	to	the	original	model	shown	in	Figure	3-5.	When
you	filter	a	given	year	in	Date,	the	filter	is	automatically	propagated	to	both	Sales
and	Purchases.	However,	because	of	the	direction	of	the	relationship,	it	does	not
reach	Product.	What	you	want	to	achieve	is	to	calculate	the	products	that	are
present	in	Sales	and	use	this	list	of	products	as	a	further	filter	to	Purchases.	The
correct	formula	for	the	measure	is	as	follows:
Click	here	to	view	code	image

PurchaseOfSoldProducts	:=

CALCULATE	(

				[PurchaseAmount],

				CROSSFILTER	(Sales[ProductKey],	Product[ProductKey],	BOTH)

)

In	this	code,	you	use	the	CROSSFILTER	function	to	activate	the	bidirectional
filter	between	Products	and	Sales	for	only	the	duration	of	the	calculation.	In	this
way,	by	using	standard	filtering	processes,	Sales	will	filter	Product,	which	then
filters	Purchases.	(For	more	information	on	the	CROSSFILTER	function,	see
Appendix	A,	“Data	modeling	101.”)
To	solve	this	scenario,	we	only	leveraged	DAX	code.	We	did	not	change	the

data	model.	Why	is	this	relevant	to	data	modeling?	Because	in	this	case,	changing
the	data	model	was	not	the	right	option,	and	we	wanted	to	highlight	this.	Updating
the	data	model	is	generally	the	right	way	to	go,	but	sometimes,	such	as	in	this
example,	you	must	author	DAX	code	to	solve	a	specific	scenario.	It	helps	to
acquire	the	skills	needed	to	understand	when	to	use	what.	Besides,	the	data	model
in	this	case	already	consists	of	two	star	schemas,	so	it	is	very	hard	to	build	a
better	one.

Understanding	model	ambiguity
The	previous	section	showed	that	setting	a	bidirectional	filter	on	a	relationship
will	not	work	because	the	model	becomes	ambiguous.	In	this	section,	we	want	to
dive	more	into	the	concept	of	ambiguous	models	to	better	understand	them	and—
more	importantly—why	they	are	forbidden	in	Tabular.

An	ambiguous	model	is	a	model	where	there	are	multiple	paths	joining	any	two
tables	through	relationships.	The	simplest	form	of	ambiguity	appears	when	you	try
to	build	multiple	relationships	between	two	tables.	If	you	try	to	build	a	model
where	the	same	two	tables	are	linked	through	multiple	relationships,	only	one	of
them	(by	default,	the	first	one	you	create)	will	be	kept	active.	The	other	ones	will
be	marked	as	inactive.	Figure	3-8	shows	an	example	of	such	a	model.	Of	the	three
relationships	shown,	only	one	is	solid	(active),	whereas	the	remaining	ones	are
dotted	(inactive).

FIGURE	3-8	You	cannot	keep	multiple	active	relationships	between	two	tables.

Why	is	this	limitation	present?	The	reason	is	straightforward:	The	DAX
language	offers	multiple	functionalities	that	work	on	relationships.	For	example,
in	Sales,	you	can	reference	any	column	of	the	Date	table	by	using	the	RELATED
function,	as	in	the	following	code:
Click	here	to	view	code	image

Sales[Year]	=	RELATED	('Date'[Calendar	Year])

RELATED	works	without	you	having	to	specify	which	relationship	to	follow.
The	DAX	language	automatically	follows	the	only	active	relationship	and	then
returns	the	expected	year.	In	this	case,	it	would	be	the	year	of	the	sale,	because	the
active	relationship	is	the	one	based	on	OrderDateKey.	If	you	could	define	multiple
active	relationships,	then	you	would	have	to	specify	which	one	of	the	many	active
relationships	to	use	for	each	implementation	of	RELATED.	A	similar	behavior
happens	with	the	automatic	filter	context	propagation	whenever	you	define	a	filter
context	by	using,	for	example,	CALCULATE.
The	following	example	computes	the	sales	in	2009:
Click	here	to	view	code	image

Sales2009	:=	CALCULATE	([Sales	Amount],

'Date'[Calendar	Year]	=	"CY	2009")

Again,	you	do	not	specify	the	relationship	to	follow.	It	is	implicit	in	the	model
that	the	active	relationship	is	the	one	using	OrderDateKey.	(In	the	next	chapter,
you	will	learn	how	to	handle	multiple	relationships	with	the	Date	table	in	an
efficient	way.	The	goal	of	this	section	is	simply	to	help	you	understand	why	an
ambiguous	model	is	forbidden	in	Tabular.)
You	can	activate	a	given	relationship	for	a	specific	calculation.	For	example,	if

you	are	interested	in	the	sales	delivered	in	2009,	you	can	compute	this	value	by
taking	advantage	of	the	USERELATIONSHIP	function,	as	in	the	following	code:
Click	here	to	view	code	image

Shipped2009	:=

CALCULATE	(

				[Sales	Amount],

				'Date'[Calendar	Year]	=	"CY	2009",

				USERELATIONSHIP	('Date'[DateKey],	Sales[DeliveryDateKey])

)

As	a	general	rule,	keeping	inactive	relationships	in	your	model	is	useful	only
when	you	make	very	limited	use	of	them	or	if	you	need	the	relationship	for	some
special	calculation.	A	user	has	no	way	to	activate	a	specific	relationship	while
navigating	the	model	with	the	user	interface.	It	is	the	task	of	the	data	modeler,	not
the	user,	to	worry	about	technical	details	like	the	keys	used	in	a	relationship.	In
advanced	models,	where	billions	of	rows	are	present	in	the	fact	table	or	the
calculations	are	very	complex,	the	data	modeler	might	decide	to	keep	inactive
relationships	in	the	model	to	speed	up	certain	calculations.	However,	such
optimization	techniques	will	not	be	necessary	at	the	introductory	level	at	which
we	are	covering	data	modeling,	and	inactive	relationships	will	be	nearly	useless.
Now,	let	us	go	back	to	ambiguous	models.	As	we	said,	a	model	might	be

ambiguous	for	multiple	reasons,	even	if	all	those	reasons	are	connected	to	the
presence	of	multiple	paths	between	tables.	Another	example	of	an	ambiguous
model	is	the	one	depicted	in	Figure	3-9.

FIGURE	3-9	This	model	is	ambiguous,	too,	although	the	reason	is	less	evident.

In	this	model,	there	are	two	different	age	columns.	One	is	Historical	Age,
which	is	stored	in	the	fact	table.	The	other	is	CurrentAge,	which	is	stored	in	the
Customer	dimension.	Both	of	these	columns	are	used	as	foreign	keys	in	the	Age
Ranges	table,	but	only	one	of	the	relationships	is	permitted	to	remain	active.	The
other	relationship	is	deactivated.	In	this	case,	ambiguity	is	a	bit	less	evident,	but	it
is	there.	Imagine	you	built	a	PivotTable	and	sliced	it	by	age	range.	Would	you
expect	to	slice	it	by	the	historical	age	(how	old	each	customer	was	at	the	moment
of	sale)	or	the	current	age	(how	old	each	customer	is	today)?	If	both	relationships
were	kept	active,	this	would	be	ambiguous.	Again,	the	engine	refuses	to	let	you
build	such	a	model.	It	forces	you	to	solve	ambiguity	by	either	choosing	which
relationship	to	maintain	as	active	or	duplicating	the	table.	That	way,	when	you
filter	either	a	Current	Age	Ranges	or	a	Historical	Age	Ranges	table,	you	specify	a
unique	path	to	filter	data.	The	resulting	model,	once	the	Age	Ranges	table	has	been
duplicated,	is	shown	in	Figure	3-10.

FIGURE	3-10	In	the	model,	there	are	now	two	Age	Ranges	tables.

Using	orders	and	invoices
The	next	example	is	a	very	practical	one	that	you	are	likely	to	encounter	in	your
daily	work.	Suppose	you	receive	orders	from	your	customers	and,	once	a	month,
you	send	out	an	invoice	that	includes	multiple	orders.	Each	invoice	contains	some
orders,	but	the	relationship	between	the	invoices	and	the	orders	is	not	clearly
stated	in	the	model.	So,	we	will	need	to	work	a	bit	to	re-create	it.
You	start	with	a	data	model	like	the	one	shown	in	Figure	3-11.

FIGURE	3-11	The	data	model	of	orders	and	invoices	is	a	simple	star	schema.

This	time,	the	starting	data	model	is	a	star	schema	with	two	fact	tables	and	a

dimension	in	the	middle.	In	the	Customer	dimension,	we	have	already	defined	the
following	two	measures:
Click	here	to	view	code	image

Amount	Ordered	:=	SUM	(Orders[Amount])

Amount	Invoiced:=	SUM	(Invoices[Amount])

With	the	two	measures	in	place,	you	can	easily	build	a	report	that	shows	the
amount	ordered	and	the	amount	invoiced	for	each	customer.	This	makes	it	easy	to
spot	how	much	you	need	to	invoice	each	customer	for,	like	in	the	example	shown
in	Figure	3-12.

FIGURE	3-12	The	amount	ordered	and	invoiced	per	customer	is	an	easy	report	to
build.

If	you	are	interested	only	in	the	top-level	numbers,	like	in	this	pivot	table,
everything	works	just	fine.	Unfortunately,	you	will	face	problems	as	soon	as	you
want	to	dig	a	bit	more	into	the	details.	For	example,	how	do	you	determine	which
orders	have	not	yet	been	invoiced?	Before	proceeding,	spend	some	time	looking
at	the	data	model	shown	in	Figure	3-11	and	try	to	spot	where	the	problem	is.
When	you’re	finished,	continue	reading.	Because	this	example	hides	some
complexity,	we	will	need	to	do	some	trial	and	error	to	identify	the	issue.	Thus,	we
will	show	you	several	wrong	solutions	to	highlight	the	reason	why	they	are	wrong.
If	you	put	the	order	number	in	the	PivotTable,	the	result	will	be	hard	to	read	and

understand,	as	shown	in	Figure	3-13,	where	all	the	orders	are	listed	under	John,
Melanie,	and	Paul.

FIGURE	3-13	When	you	drill	down	to	the	order	level,	the	Amount	Invoiced
column	returns	the	wrong	results.

This	scenario	is	very	similar	to	the	one	at	the	beginning	of	this	chapter,	which
had	two	completely	denormalized	fact	tables.	The	filter	on	the	order	number	is	not
effective	against	the	invoices	because	an	invoice	does	not	have	an	order	number.
Therefore,	the	value	shown	by	Amount	Invoiced	uses	the	filter	only	on	the
customer,	showing	the	total	invoiced	per	customer	on	all	the	rows.
At	this	point,	it	is	worth	repeating	one	important	concept:	The	number	reported

by	the	PivotTable	is	correct.	It	is	the	correct	number	given	the	information	present
in	the	model.	If	you	carefully	think	about	it,	there	is	no	way	the	engine	can	split	the
amount	invoiced	among	the	different	orders	because	the	information	about	which
order	was	invoiced	is	missing	from	the	model.	Thus,	the	solution	to	this	scenario
requires	us	to	build	a	proper	data	model.	It	needs	to	contain	not	only	the
information	about	the	total	invoiced,	but	also	the	details	about	which	orders	have
been	invoiced	and	which	invoice	contains	what	orders.	As	usual,	before	moving
further,	it	is	worth	spending	some	time	trying	to	figure	out	how	you	would	solve

this	case.
There	are	multiple	solutions	to	this	scenario,	depending	on	the	complexity	of

the	data	model.	Before	going	into	more	details,	let	us	take	a	look	at	the	data	shown
in	Figure	3-14.

FIGURE	3-14	The	figure	shows	the	actual	data	used	in	this	model.

As	you	can	see,	the	Invoices	and	Orders	tables	both	have	a	Customer	column,
which	contains	customer	names.	Customer	is	on	the	one	side	of	two	many-to-one
relationships	that	start	from	Orders	and	Invoices.	What	we	need	to	add	to	the
model	is	a	new	relationship	between	Orders	and	Invoices	that	states	which	order
is	invoiced	with	what	invoice.	There	are	two	possible	scenarios:

	Each	order	is	related	to	an	individual	invoice	You	face	this	scenario	when
an	order	is	always	fully	invoiced.	Thus,	an	invoice	can	contain	multiple
orders,	but	one	order	always	has	a	single	invoice.	You	can	read,	in	this
description,	a	one-to-many	relationship	between	the	invoices	and	orders.
	Each	order	can	be	invoiced	in	multiple	invoices	If	an	order	can	be
partially	invoiced,	then	the	same	order	might	belong	to	multiple	invoices.	If
this	is	the	case,	then	one	order	can	belong	to	multiple	invoices,	and,	at	the
same	time,	one	invoice	can	contain	multiple	orders.	In	such	a	case,	you	are
facing	a	many-to-many	relationship	between	orders	and	invoices,	and	the
scenario	is	a	bit	more	complex.

The	first	scenario	is	very	simple	to	solve.	In	fact,	you	only	need	to	add	the

invoice	number	to	the	Orders	table	by	using	one	additional	column.	The	resulting
model	is	shown	in	Figure	3-15.

FIGURE	3-15	The	highlighted	column	contains	the	invoice	number	for	each	given
order.

Even	if	it	looks	like	a	simple	modification	to	the	model,	it	is	not	so	easy	to
handle.	In	fact,	when	you	load	the	new	model	and	try	to	build	the	relationship,	you
will	experience	a	bad	surprise:	The	relationship	can	be	created,	but	it	is	left
inactive,	as	shown	in	Figure	3-16.

FIGURE	3-16	The	relationship	between	the	Orders	and	Invoices	tables	is	created
as	an	inactive	relationship.

Where	is	the	ambiguity	in	the	model?	If	the	relationship	between	Orders	and
Invoices	would	remain	active,	then	you	would	have	two	paths	from	Orders	to
Customer:	one	straight,	using	the	relationship	between	Orders	and	Customer,	and
an	indirect	one	going	from	Orders	to	Invoices	and	then,	finally,	to	Customer.	Even
if,	in	this	case,	the	two	relationships	would	end	up	pointing	to	the	same	customer,
this	is	not	known	to	the	model	and	only	depends	on	the	data.	Nothing	in	the	model
prevents	you	from	incorrectly	relating	an	order	with	an	invoice	that	points	to	a
customer	who	is	different	from	the	one	in	the	invoice.	Thus,	the	model,	as	it	is,
does	not	work.
The	way	to	fix	this	is	much	simpler	than	expected.	In	fact,	if	you	look	carefully

at	the	model,	there	is	a	one-to-many	relationship	between	Customer	and	Invoices,
and	another	one-to-many	relationship	between	Invoices	and	Orders.	The	customer
of	an	order	can	be	safely	retrieved	using	Invoices	as	a	middle	table.	Thus,	you	can
remove	the	relationship	between	Customer	and	Orders	and	rely	on	the	other	two,
obtaining	the	model	shown	in	Figure	3-17.

FIGURE	3-17	When	the	relationship	between	Orders	and	Customer	is	removed,
the	model	is	much	simpler.

Does	the	model	in	Figure	3-17	look	familiar?	This	is	the	very	same	pattern	of
the	header/detail	data	model	that	we	discussed	in	Chapter	2,	“Using	header/detail
tables.”	You	now	have	two	fact	tables:	one	containing	the	invoices	and	the	other
one	containing	the	orders.	Orders	acts	as	the	detail	table,	whereas	Invoices	acts	as
the	header	table.
Being	a	header/detail	pattern,	this	model	inherits	all	the	pros	and	cons	of	that

model.	To	some	extent,	the	problem	of	the	relationship	is	solved,	but	the	problem
of	amounts	is	not.	If	you	browse	the	model	with	a	PivotTable,	the	result	is	the
same	as	the	one	shown	in	Figure	3-13,	with	all	the	order	numbers	listed	for	all	the
customers.	The	reason	for	this	is	that,	whatever	order	you	choose,	the	total
invoiced	per	customer	is	always	the	same.	Even	if	the	chain	of	relationships	is	set
in	the	correct	way,	the	data	model	is	still	incorrect.
In	reality,	the	situation	is	a	bit	subtler	than	this.	When	you	browse	by	customer

name	and	order	number,	what	data	do	you	want	to	report?	Review	the	following
data	measurements:

	The	total	invoiced	for	that	customer	This	is	the	number	reported	by	the
system	right	now,	and	it	looks	wrong.
	The	total	number	of	invoices	that	include	the	given	order	of	the	given
customer	In	such	a	case,	you	want	to	report	the	total	invoiced	if	the	order
was	present	in	the	invoice,	and	make	the	result	blank	otherwise.
	The	amount	of	the	order,	if	invoiced	In	this	case,	you	report	the	full
amount	of	the	order	if	it	has	been	invoiced	or	a	zero	otherwise.	You	might
report	values	higher	than	the	actual	invoices	because	you	report	the	full
order,	not	only	the	invoiced	part.

	Note

The	list	might	end	here,	but	we	are	forgetting	an	important	part.	What

if	an	order	was	included	in	an	invoice	but	not	completely	invoiced?
There	might	be	several	reasons	for	this,	and	the	calculations	are	even
more	complex.	We	will	focus	on	that	scenario	later.	For	now,	let’s
solve	these	first	three	calculations.

Calculating	the	total	invoiced	for	the	customer
The	first	calculation	is	the	one	that	exists	right	now.	Because	the	amount	invoiced
does	not	depend	on	the	order,	you	simply	sum	the	invoice	amounts	and	produce	a
result.	The	major	drawback	of	this	solution	is	that	the	filter	on	the	order	number	is
not	effective	against	the	invoices,	so	you	will	always	report	the	amount	invoiced
to	the	customer,	regardless	of	the	order	number.

Calculating	the	number	of	invoices	that	include	the	given	order
of	the	given	customer
To	compute	the	second	calculation,	you	must	explicitly	force	the	filter	on	the
orders	to	work	on	the	invoices.	This	can	be	performed	by	using	the	bidirectional
pattern,	as	in	the	following	code:
Click	here	to	view	code	image

Amount	Invoiced	Filtered	by	Orders	:=

CALCULATE	(

				[Amount	Invoiced],

				CROSSFILTER	(Orders[Invoice],	Invoices[Invoice],	BOTH)

)

The	result	of	this	calculation	is	that	[Amount	Invoiced]	is	computed	for	only	the
invoices	that	are	present	in	the	current	selection	of	orders.	You	can	see	the
resulting	PivotTable	in	Figure	3-18.

FIGURE	3-18	Moving	the	filter	from	orders	to	invoices	changes	the	result.

Calculating	the	amount	of	the	order,	if	invoiced
The	last	measure,	as	expected,	is	non-additive.	In	fact,	because	it	reports	the	total
invoiced	for	each	order,	it	will	typically	show	a	much	higher	value	than	the	order
amount.	You	might	recall	this	behavior	from	the	previous	chapter.	Because	we	are
aggregating	a	value	from	the	header	table,	when	we	browse	using	a	filter	on	the
detail,	the	resulting	calculation	is	non-additive.
To	make	the	measure	additive,	you	should	check	for	each	order	to	determine

whether	it	has	been	invoiced.	If	so,	then	the	amount	invoiced	is	the	amount	of	the
order.	Otherwise	it	is	zero.	This	can	be	easily	done	with	a	calculated	column	or
with	a	slightly	more	complex	measure,	like	the	following:
Click	here	to	view	code	image

Amount	Invoiced	Filtered	by	Orders	:=

CALCULATE	(

				SUMX	(

								Orders,

								IF	(NOT	(ISBLANK	(Orders[Invoice])),	Orders[Amount])

),

				CROSSFILTER	(Orders[Invoice],	Invoices[Invoice],	BOTH)

)

This	measure	works	well	if	an	order	is	always	fully	invoiced,	but	otherwise	it
computes	a	wrong	number	because	it	returns	the	amount	invoiced.	An	example	is
shown	in	Figure	3-19,	which	reports	the	same	value	for	the	total	invoiced	and	the
total	ordered,	even	if	we	know	that	the	two	numbers	should	be	different.	This	is
because	we	are	computing	the	amount	invoiced	from	the	orders	instead	of	from	the
invoices.

FIGURE	3-19	If	an	order	is	not	fully	invoiced,	the	last	measure	shows	an
incorrect	result.

There	is	no	easy	way	to	compute	the	partial	amount	of	the	order	invoiced
because	that	information	is	not	there,	in	the	model.	In	the	case	of	partial	invoicing,
if	you	only	store	for	each	order	the	invoice	that	contains	it,	you	are	missing	the
important	value	of	the	amount	invoiced.	To	provide	a	correct	result,	you	should
store	this	value,	too,	and	use	the	amount	invoiced	instead	of	the	amount	of	the

order	in	the	previous	formula.
In	addressing	this	point,	we	go	one	step	further	and	build	a	complete	model	to

solve	the	scenario.	We	will	build	a	model	that	enables	you	to	invoice	an	order
with	different	invoices	and	to	state,	for	each	pair	of	invoices	and	orders,	the
amount	invoiced.	The	model	needs	to	be	a	bit	more	complex.	It	will	involve	an
additional	table	that	stores	the	invoice	number,	the	order	number,	and	the	amount
of	the	order	invoiced.	The	model	is	shown	in	in	Figure	3-20.

FIGURE	3-20	This	structure	models	one	order	with	multiple	invoices,	and	one
invoice	with	multiple	orders,	with	the	amount	invoiced	for	each	order.

The	model	involves	a	many-to-many	relationship	between	orders	and	invoices.
A	single	order	can	be	invoiced	with	multiple	invoices,	and,	at	the	same	time,	a
single	invoice	can	contain	multiple	orders.	The	amount	invoiced	for	each	order	is
stored	in	the	OrdersInvoices	table,	so	each	order	can	be	partially	invoiced	in
different	documents.
We	will	cover	in	more	detail	many-to-many	handling	in	Chapter	8,	“Many-to-

many	relationships.”	But	it	is	useful,	even	at	this	point,	to	show	a	correct	model	to
handle	invoices	and	orders.	Here,	we	are	deliberately	violating	the	star	schema
rules	to	correctly	build	the	model.	In	fact,	the	OrdersInvoices	table	is	neither	a
fact	table	nor	a	dimension.	It	is	similar	to	a	fact	table	because	it	contains	the
Amount	metric,	and	it	is	related	to	the	Invoices	dimension.	However,	it	is	related
to	Orders,	which	is,	at	the	same	time,	a	fact	table	and	a	dimension.	Technically,
the	OrdersInvoices	table	is	called	a	bridge	table,	because	it	acts	as	a	bridge
between	orders	and	invoices.
Now	that	the	amount	invoiced	is	stored	in	the	bridge	table,	the	formula	to

compute	the	amount	invoiced	for	the	order	selection	is	a	slight	variation	from	the
previous	one,	as	you	can	see	in	the	following	code:
Click	here	to	view	code	image

Amount	Invoiced	:=

CALCULATE	(

				SUM	(OrdersInvoices[Amount]),

				CROSSFILTER	(OrdersInvoices[Invoice],	Invoices[Invoice],	BOTH)

)

You	sum	the	Amount	column	in	the	bridge	table	and	the	CROSSFILTER
function	activates	bidirectional	filtering	between	the	bridge	table	and	Invoices.
The	result	of	using	this	formula	is	much	more	interesting	because	you	can	now
easily	spot	the	amount	ordered	and	invoiced	for	every	order,	and	you	can	obtain
reports	like	the	one	shown	in	Figure	3-21.

FIGURE	3-21	Using	the	bridge	table,	you	can	produce	a	report	showing	the
amount	ordered	and	invoiced.

Conclusions

In	this	chapter,	you	learned	how	to	handle	different	scenarios	with	multiple	fact
tables	that	are,	in	turn,	related	through	dimensions	or	through	bridge	tables.	The
most	important	topics	you	learned	in	this	chapter	are	as	follows:

	If	you	denormalize	too	much,	you	reach	a	point	at	which	your	tables	are
over-denormalized.	In	such	a	scenario,	filtering	different	fact	tables
becomes	impossible.	To	correct	this,	you	must	build	a	proper	set	of
dimensions	to	be	able	to	slice	values	from	the	different	fact	tables.
	Although	you	can	leverage	DAX	to	handle	over-denormalized	scenarios,	the
DAX	code	quickly	becomes	too	complex	to	handle.	A	change	in	the	data
model	makes	the	code	much	easier.
	Complex	relationships	between	dimensions	and	fact	tables	can	create
ambiguous	models,	which	cannot	be	handled	by	the	DAX	engine.
Ambiguous	models	must	be	solved	at	the	data-model	level	by	duplicating
some	tables	and/or	denormalizing	their	columns.
	Complex	models	like	orders	and	invoices	involve	multiple	fact	tables.	To
model	them	the	right	way,	you	must	build	a	bridge	table	so	that	the
information	is	related	to	the	correct	entity.

Chapter	4.	Working	with	date	and	time

In	business	models,	you	typically	compute	year-to-date	(YTD),	year-over-year
comparisons,	and	percentage	of	growth.	In	scientific	models,	you	might	need	to
compute	forecasts	based	on	previous	data	or	check	the	accuracy	of	numbers	over
time.	Nearly	all	these	models	contain	some	calculations	related	to	time,	which	is
why	we	have	dedicated	a	full	chapter	to	these	kinds	of	calculations.
In	more	technical	terms,	we	say	time	is	a	dimension,	meaning	you	typically	use

a	Calendar	table	to	slice	your	data	by	year,	month,	or	day.	Time	is	not	just	a
dimension,	however.	It	is	a	very	special	dimension	that	you	need	to	create	in	the
right	way	and	for	which	there	are	some	special	considerations.
This	chapter	shows	several	scenarios	and	provides	a	data	model	for	each	one.

Some	examples	are	very	simple,	whereas	others	require	very	complex	DAX	code
to	be	solved.	Our	goal	is	to	show	you	examples	of	data	models	and	to	give	you	a
better	idea	of	how	to	correctly	model	date	and	time.

Creating	a	date	dimension
Time	is	a	dimension.	A	simple	column	in	your	fact	table	containing	the	date	of	the
event	is	not	enough.	If,	for	example,	you	need	to	use	the	model	shown	in	Figure	4-
1	to	create	a	report,	you	will	quickly	discover	that	the	date	alone	is	not	enough	to
produce	useful	reports.

FIGURE	4-1	The	Sales	table	contains	the	Order	Date	column	with	the	date	of	the
order.

By	using	the	date	in	Sales,	you	can	slice	values	by	individual	dates.	However,
if	you	need	to	aggregate	them	by	year	or	by	month,	then	you	need	additional

columns.	You	can	easily	address	the	issue	by	creating	a	set	of	calculated	columns
directly	in	the	fact	table	(although	this	is	not	an	optimal	solution	because	it
prevents	you	from	using	time-intelligence	functions).	For	example,	you	can	use	the
following	simple	formulas	to	create	a	set	of	three	columns—Year,	Month	Name,
and	Month	Number:
Click	here	to	view	code	image

Sales[Year]	=	YEAR	(Sales[Order	Date])

Sales[Month]	=	FORMAT	(Sales[Order	Date],	"mmmm")

Sales[MonthNumber]	=	MONTH	(Sales[Order	Date])

Obviously,	the	month	numbers	are	useful	for	sorting	the	month	names	in	the
correct	way.	When	you	include	them,	you	can	use	the	Sort	by	Column	feature	that
is	available	in	both	Power	BI	Desktop	and	the	Excel	data	model.	As	shown	in
Figure	4-2,	these	columns	work	perfectly	fine	to	create	reports	that	slice	values,
like	the	sales	amount,	by	time.

FIGURE	4-2	The	report	shows	sales	sliced	by	date,	by	using	calculated	columns
in	the	fact	table.

However,	there	are	a	couple	of	issues	with	this	model.	For	example,	if	you
need	to	slice	purchases	by	date,	you	end	up	repeating	the	same	setup	of	the
calculated	columns	for	the	Purchases	table.	Because	the	columns	belong	to	the	fact
tables,	you	cannot	use	the	years	in	Sales	to	slice	Purchases.	As	you	might	recall
from	Chapter	3,	“Using	multiple	fact	tables,”	you	need	a	dimension	to	correctly

slice	two	fact	tables	at	once.	Moreover,	you	typically	have	many	columns	in	a	date
dimension—for	example,	columns	for	fiscal	years	and	months,	holiday
information,	and	working	days.	Storing	all	these	columns	in	a	single,	easily
manageable	table	is	a	great	plus.
There	is	another	more	important	reason	to	use	dimensions.	Using	columns	in	the

fact	table	makes	the	coding	of	time-intelligence	calculations	much	more	complex,
whereas	using	a	date	dimension	makes	all	these	formulas	much	easier	to	write.
Let	us	elaborate	on	this	concept	with	an	example.	Suppose	you	want	to	compute

the	YTD	value	of	Sales	Amount.	If	you	can	rely	only	on	columns	in	the	fact	table,
the	formula	becomes	quite	complicated,	as	in	the	following:
Click	here	to	view	code	image

Sales	YTD	:=

VAR	CurrentYear	=	MAX	(Sales[Year])	

VAR	CurrentDate	=	MAX	(Sales[Order	Date])

RETURN

CALCULATE	(

				[Sales	Amount],

				Sales[Order	Date]	<=	CurrentDate,

				Sales[Year]	=	CurrentYear,

				ALL	(Sales[Month]),

				ALL	(Sales[MonthNumber])

)

Specifically,	the	code	needs	to	do	the	following:
1.	Apply	a	filter	on	the	date	by	filtering	only	the	ones	before	the	last	visible
date.

2.	Keep	a	filter	on	the	year,	taking	care	to	show	only	the	last	visible	one	in
case	there	are	multiple	in	the	filter	context.

3.	Remove	any	filter	from	the	month	(in	Sales).
4.	Remove	any	filter	from	the	month	number	(again,	in	Sales).

	Note

If	you	are	not	familiar	with	DAX,	gaining	a	deep	understanding	of
why	this	formula	works	is	a	great	mental	exercise	to	become	more
familiar	with	the	way	filter	context	and	variables	work	together.

This	code	works	just	fine,	as	shown	in	Figure	4-3.	However,	it	is	unnecessarily
complex.	The	biggest	problem	with	the	formula	is	that	you	cannot	leverage	the
built-in	DAX	functions	that	are	designed	to	help	you	author	time-intelligence
calculations.	In	fact,	those	functions	rely	on	the	presence	of	a	specific	table
dedicated	to	dates.

FIGURE	4-3	Sales	YTD	reports	the	correct	values,	but	its	code	is	too
complicated.

If	you	update	the	data	model	by	adding	a	date	dimension,	like	the	one	in	Figure
4-4,	the	formula	becomes	much	easier	to	author.

FIGURE	4-4	Adding	a	date	dimension	to	the	model	makes	the	code	much	easier
to	write.

At	this	point,	you	can	use	the	predefined	time-intelligence	functions	to	author
Sales	YTD	in	the	following	way:
Click	here	to	view	code	image

Sales	YTD	:=

CALCULATE	(

				[Sales	Amount],

				DATESYTD	('Date'[Date])

)

	Note

This	is	true	not	just	for	YTD	calculations.	All	time-intelligence
metrics	are	much	easier	to	write	when	you	use	a	date	dimension.

By	using	a	date	dimension,	you	achieve	the	following:
	You	simplify	the	writing	of	measures.
	You	obtain	a	central	place	to	define	all	columns	related	to	the	time	that	you
will	need	to	build	reports.
	You	improve	the	performance	of	the	queries.
	You	create	a	model	that	is	simpler	to	navigate.

These	are	the	advantages,	but	what	about	the	disadvantages?	In	this	case,	there
are	none.	Always	using	a	time	dimension,	yields	only	advantages.	Get	used	to
creating	a	calendar	dimension	every	time	you	build	a	data	model,	and	don’t	fall
into	the	trap	of	choosing	the	easy	way	of	using	calculated	columns.	If	you	do,	you
will	regret	that	decision	sooner	rather	than	later.

Understanding	automatic	time	dimensions
In	Excel	2016	and	in	Power	BI	Desktop,	Microsoft	has	built	an	automated	system
to	work	with	time	intelligence—although	the	two	tools	use	different	mechanisms.
We	discuss	both	in	this	section.

	Note

As	you	will	learn	in	this	section,	we	discourage	you	from	using	either
of	these	systems	because	they	do	not	provide	the	necessary	flexibility
and	ease	of	use	that	you	need	in	your	models.

Automatic	time	grouping	in	Excel
When	you	use	a	PivotTable	on	an	Excel	data	model,	adding	a	date	column	to	the

PivotTable	prompts	Excel	to	automatically	generate	a	set	of	columns	in	the
PivotTable	to	automate	date	calculations.	For	example,	you	might	start	with	the
model	shown	in	Figure	4-5,	where	the	Sales	table	contains	only	one	date	column,
the	Order	Date	column.

FIGURE	4-5	The	Sales	table	contains	a	date	column,	which	is	Order	Date,	and
no	columns	with	the	year	and/or	month.

If	you	create	a	PivotTable	with	Sales	Amount	in	the	values	area	and	Order	Date
in	the	columns,	you	will	notice	a	small	delay.	Then,	surprisingly,	instead	of	seeing
the	Order	Date,	you	will	see	the	PivotTable	shown	in	Figure	4-6.

FIGURE	4-6	The	PivotTable	slices	the	date	by	year	and	quarter,	even	if	you	did
not	have	those	columns	in	the	model.

To	make	this	PivotTable	slice	by	year,	Excel	automatically	added	some
columns	to	the	Sales	table,	which	you	can	see	if	you	reopen	the	data	model.	The
result	is	shown	in	Figure	4-7,	which	highlights	the	new	columns	added	by	Excel.

FIGURE	4-7	The	Sales	table	contains	new	columns,	which	were	automatically
created	by	Excel.

Notice	that	Excel	did	exactly	what	we	suggested	you	avoid:	It	created	a	set	of
columns	to	perform	the	slicing	directly	in	the	table	that	contains	the	date	column.	If
you	perform	the	same	operation	on	another	fact	table,	you	will	obtain	a	new	set	of
columns,	and	the	two	cannot	be	used	to	cross-filter	the	tables.	Moreover,	because
the	columns	are	created	in	the	fact	table,	on	large	datasets,	this	takes	time	and
space	in	the	Excel	file.	You	can	find	more	information	about	this	feature	at
https://blogs.office.com/2015/10/13/time-grouping-enhancements-in-excel-
2016/.	This	article	also	contains	a	link	to	a	procedure	that	involves	editing	the
registry	to	turn	off	this	feature.	Unless	you	work	with	very	simple	models,	we
recommend	you	follow	the	procedure	to	disable	automatic	time	grouping	and	learn
the	correct	way	to	handle	it	by	hand,	which	we	explain	in	this	chapter.

Automatic	time	grouping	in	Power	BI	Desktop
Power	BI	Desktop	tries	to	make	time-intelligence	calculations	easier	by
automating	some	of	the	steps.	Unfortunately,	even	if	it	automates	the	steps	slightly
better	than	Excel,	Power	BI	Desktop	is	not	the	best	solution	for	time	intelligence.
If	you	use	the	same	data	model	as	in	Figure	4-7	in	Power	BI	Desktop	and	you

build	a	matrix	with	the	Order	Date	column,	you	obtain	the	visualization	shown	in
Figure	4-8.

https://blogs.office.com/2015/10/13/time-grouping-enhancements-in-excel-2016/

FIGURE	4-8	The	matrix	shows	Year,	Quarter,	and	Month	columns,	even	though
these	columns	are	not	part	of	the	model.

Like	Excel,	Power	BI	Desktop	automatically	generates	a	calendar	hierarchy.
However,	it	uses	a	different	technique.	In	fact,	if	you	look	at	the	Sales	table,	you
will	not	find	any	new	calculated	columns.	Instead,	Power	BI	Desktop	generates	a
hidden	table	for	each	column	that	contains	a	date	in	the	model	and	builds	the
necessary	relationship.	When	you	slice	by	the	date,	it	uses	the	hierarchy	created	in
the	hidden	table.	Thus,	it	is	somewhat	smarter	than	Excel.	However,	this	approach
has	the	following	limitations:

	The	automatically	generated	table	is	hidden	and	there	is	no	way	for	you	to
modify	its	content.	For	example,	there	is	no	way	to	change	the	column	names
or	the	way	data	is	sorted,	or	to	handle	fiscal	calendars.
	Power	BI	Desktop	generates	one	table	per	column.	Thus,	if	you	have
multiple	fact	tables,	they	will	be	linked	to	different	Date	tables,	and	you
cannot	slice	multiple	tables	using	a	single	calendar.

Over	time,	we	have	gotten	used	to	disabling	automatic	calendar	generation	in
Power	BI	Desktop.	(To	do	so,	click	the	File	tab,	click	Options	and	Settings	to
open	the	Options	dialog	box,	choose	the	Data	Load	page,	and	deselect	the	Auto
Date/Time	check	box.)	And	we	are	always	prepared	to	configure	a	custom
Calendar	table	over	which	we	have	full	control	that	can	filter	all	the	fact	tables
we	add	to	the	model.	We	suggest	you	do	the	same.

Using	multiple	date	dimensions

One	fact	table	might	contain	multiple	dates.	This	happens	very	frequently.	In	the
Contoso	database,	for	example,	each	order	has	three	different	dates:	order	date,
due	date,	and	delivery	date.	Moreover,	different	fact	tables	might	contain	dates.
Thus,	the	number	of	dates	in	a	data	model	is	frequently	high.	What	is	the	right	way
to	create	a	model	when	there	are	multiple	dates?	The	answer	is	very	simple:
Apart	from	some	very	exceptional	scenarios,	there	should	be	a	single	date
dimension	in	the	whole	model.	This	section	is	dedicated	to	understanding	the
reason	for	using	a	single	date	dimension.
As	mentioned,	there	are	three	dates	in	Sales	that	can	be	used	to	relate	Sales

with	Date.	You	might	try	to	create	multiple	relationships	between	the	two	tables
that	are	based	on	the	three	pairs	of	columns.	Unfortunately,	the	result	is	that	the
first	relationship	you	create	will	be	activated,	whereas	the	next	two	will	be
created	but	kept	inactive,	as	shown	in	Figure	4-9.

FIGURE	4-9	Of	the	three	relationships	between	Sales	and	Date,	only	one	is
active	(a	solid	line).	The	other	relationships	are	inactive	(dotted	lines).

You	can	temporarily	activate	inactive	relationships	by	using	the
USERELATIONSHIP	function,	but	this	is	a	technique	we	will	use	later	for	some
formulas.	When	you	project	this	data	model	in	a	PivotTable	or	a	report,	inactive
relationships	are	not	used	by	any	of	your	formulas.	A	user	has	no	way	to	instruct
Excel,	for	example,	to	activate	a	specific	relationship	in	a	single	PivotTable.

	Note

Relationships	cannot	be	made	active	because	the	engine	cannot
create	data	models	that	contain	ambiguity.	Ambiguity	occurs
whenever	there	are	multiple	ways	to	start	from	one	table	(Sales,	in
this	example)	and	reach	another	table	(Date,	in	this	example).
Imagine	you	want	to	create	a	calculated	column	in	Sales	that	contains

RELATED	(Date[Calendar	Year]).	In	such	a	scenario,
DAX	would	not	know	which	of	the	three	relationships	to	use.	For
this	reason,	only	one	can	be	active,	and	it	determines	the	behavior	of
RELATED,	RELATEDTABLE,	and	the	automatic	filter	context
propagation.

Because	using	inactive	relationships	does	not	seem	to	be	the	way	to	go,	you
should	modify	the	data	model	by	duplicating	the	dimension.	In	our	example,	you
can	load	the	Date	table	three	times:	once	for	the	order	date,	once	for	the	due	date,
and	once	for	the	delivery	date.	You	should	obtain	a	non-ambiguous	model	like	the
one	shown	in	Figure	4-10.

FIGURE	4-10	Loading	the	Date	table	multiple	times	removes	ambiguity	from	the
model.

Using	this	model,	it	is	now	possible	to	create	reports	that	show,	for	example,

the	amount	sold	in	one	year	but	delivered	in	a	different	one,	as	shown	in	Figure	4-
11.

FIGURE	4-11	The	report	shows	the	amount	sold	in	one	year	and	shipped	in	a
different	one.

At	first	glance,	the	PivotTable	in	Figure	4-11	is	hard	to	read.	It	is	very	difficult
to	quickly	grasp	whether	the	delivery	year	is	in	rows	or	in	columns.	You	can
deduce	that	the	delivery	year	is	in	columns	by	analyzing	the	numbers	because
delivery	always	happens	after	the	placement	of	the	order.	Nevertheless,	this	is	not
evident	as	it	should	be	in	a	good	report.
It	is	enough	to	change	the	content	of	the	year	column	using	the	prefix	OY	for	the

order	year	and	DY	for	the	delivery	year.	This	modifies	the	query	of	the	Calendar
table	and	it	makes	the	report	much	easier	to	understand,	as	shown	in	Figure	4-12.

FIGURE	4-12	Changing	the	prefix	of	the	order	and	delivery	years	makes	the
report	much	easier	to	understand.

So	far,	it	looks	like	you	can	easily	handle	multiple	dates	by	duplicating	the	date
dimension	as	many	times	as	needed,	taking	care	to	rename	columns	and	add
prefixes	to	the	column	values	to	make	the	report	easy	to	read.	To	some	extent,	this
is	correct.	Nevertheless,	it	is	important	to	learn	what	might	happen	as	soon	as	you
have	multiple	fact	tables.	If	you	add	another	fact	table	to	the	data	model,	like
Purchases,	the	scenario	becomes	much	more	complex,	as	shown	in	Figure	4-13.

FIGURE	4-13	The	Purchases	table	has	three	additional	dates.

The	simple	addition	of	the	Purchases	table	to	the	model	generates	three
additional	dates	because	purchases	also	have	an	order,	delivery,	and	due	date.
The	scenario	now	requires	more	skill	to	correctly	design	it.	In	fact,	you	can	add
three	additional	date	dimensions	to	the	model,	reaching	six	dates	in	a	single
model.	Users	will	be	confused	by	the	presence	of	all	these	dates.	Therefore,
although	the	model	is	very	powerful,	it	is	not	easy	to	use,	and	it	is	very	likely	to
lead	to	a	poor	user	experience.	Besides	that,	can	you	imagine	what	happens	if,	at
some	point,	you	need	to	add	further	fact	tables?	This	explosion	of	date	dimensions
is	not	good	at	all.
Another	option	would	be	to	use	the	three	dimensions	that	are	already	present	in

the	model	to	slice	the	purchases	and	sales.	Thus,	Order	Date	filters	the	order	dates
of	both	Sales	and	Purchases.	The	same	thing	happens	for	the	other	two
dimensions,	too.	The	data	model	becomes	the	one	shown	in	Figure	4-14.

FIGURE	4-14	Using	the	same	dimensions	to	filter	two	fact	tables	makes	the
model	easier	to	use.

The	model	in	Figure	4-14	is	much	easier	to	use,	but	it	is	still	too	complex.
Moreover,	it	is	worth	noting	that	we	were	very	lucky	with	the	dimension	we
added.	Purchases	had	the	same	three	dates	as	Sales,	which	is	not	very	common	in
the	real	world.	It	is	much	more	likely	that	you	will	add	fact	tables	with	dates	that
have	nothing	to	share	with	the	previous	facts.	In	such	cases,	you	must	decide
whether	to	create	additional	date	dimensions,	making	the	model	harder	to	browse,
or	to	join	the	new	fact	table	to	one	of	the	existing	dates,	which	might	create
problems	in	terms	of	the	user	experience	because	the	names	are	not	likely	to	match
perfectly.
The	problem	can	be	solved	in	a	much	easier	way	if	you	resist	the	urge	to	create

multiple	date	dimensions	in	your	model.	In	fact,	if	you	stick	with	a	single	date
dimension,	the	model	will	be	much	easier	to	browse	and	understand,	as	shown	in

Figure	4-15.

FIGURE	4-15	In	this	simpler	model,	there	is	a	single	date	dimension	that	is
linked	to	OrderDate	in	both	fact	tables.

Using	a	single	date	dimension	makes	the	model	extremely	easy	to	use.	In	fact,
you	intuitively	know	that	Date	will	slice	both	Sales	and	Purchases	using	their
main	date	column,	which	is	the	date	of	the	order.	At	first	sight,	this	model	looks
less	powerful	than	the	previous	ones,	and	to	some	extent,	this	is	true.
Nevertheless,	before	concluding	that	this	model	is	in	fact	less	powerful,	it	is
worth	spending	some	time	analyzing	what	the	differences	are	in	analytical	power
between	a	model	with	many	dates	and	one	with	a	single	date.
Offering	many	Date	tables	to	the	user	makes	it	possible	to	produce	reports	by

using	multiple	dates	at	once.	You	saw	in	a	previous	example	that	this	might	be
useful	to	compute	the	amount	sold	versus	the	amount	shipped.	Nevertheless,	the
real	question	is	whether	you	need	multiple	dates	to	show	this	piece	of	information.
The	answer	is	no.	You	can	easily	address	this	issue	by	creating	specific	measures
that	compute	the	needed	values	without	having	to	change	the	data	model.
If,	for	example,	you	want	to	compare	the	amount	sold	versus	the	amount

shipped,	you	can	keep	an	inactive	relationship	between	Sales	and	Date,	based	on
the	DeliveryDateKey,	and	then	activate	it	for	some	very	specific	measure.	In	our
case,	you	would	add	one	inactive	relationship	between	Sales	and	Date,	obtaining
the	model	shown	in	Figure	4-16.

FIGURE	4-16	The	relationship	between	DeliveryDateKey	and	DateKey	is	in	the
model,	but	it	is	disabled.

Once	the	relationship	is	in	place,	you	can	write	the	Delivered	Amount	measure
in	the	following	way:
Click	here	to	view	code	image

Delivered	Amount	:=

CALCULATE	(

				[Sales	Amount],

				USERELATIONSHIP	(Sales[DeliveryDateKey],	'Date'[DateKey])

)

This	measure	enables	the	inactive	relationship	between	Sales	and	Date	for	only
the	duration	of	the	calculation.	Thus,	you	can	use	the	Date	table	to	slice	your	data,
and	you	still	get	information	that	is	related	to	the	delivery	date,	as	shown	in	the
report	in	Figure	4-17.	By	choosing	an	appropriate	name	for	the	measure,	you	will
not	incur	any	ambiguity	when	using	it.

FIGURE	4-17	Delivered	Amount	uses	the	relationship	based	on	a	delivery	date,
but	its	logic	is	hidden	in	the	measure.

Thus,	the	simple	rule	is	to	create	a	single	date	dimension	for	the	whole	model.
Obviously,	this	is	not	a	strict	rule.	There	are	scenarios	where	having	multiple	date
dimensions	makes	perfect	sense.	But	there	must	be	a	powerful	need	to	justify	the
pain	of	handling	multiple	Date	tables.
In	our	experience,	most	data	models	do	not	really	require	multiple	Date	tables.

One	is	enough.	If	you	need	some	calculations	made	using	different	dates,	then	you
can	create	measures	to	compute	them,	leveraging	inactive	relationships.	Most	of
the	time,	adding	many	date	dimensions	comes	from	some	lack	in	the	analysis	of	the
requirements	of	the	model.	Thus,	before	adding	another	date	dimension,	always
ask	yourself	whether	you	really	need	it,	or	if	you	can	compute	the	same	values
using	DAX	code.	If	the	latter	is	true,	then	go	for	more	DAX	code	and	fewer	date
dimensions.	You	will	never	regret	that.

Handling	date	and	time
Date	is	almost	always	a	needed	dimension	in	any	model.	Time,	on	the	other	hand,
appears	much	less	frequently.	With	that	said,	there	are	scenarios	where	both	the
date	and	the	time	are	important	dimensions,	and	in	those	cases,	you	need	to
carefully	understand	how	to	handle	them.
The	first	important	point	to	note	is	that	a	Date	table	cannot	contain	time

information.	In	fact,	to	mark	a	table	as	a	Date	table	(which	you	must	do	if	you
intend	to	use	any	time-intelligence	functions	on	a	table),	you	need	to	follow	the
requirements	imposed	by	the	DAX	language.	Among	those	requirements	is	that	the
column	used	to	hold	the	datetime	value	should	be	at	the	day	granularity,
without	time	information.	You	will	not	get	an	error	from	the	engine	if	you	use	a
Date	table	that	also	contains	time	information.	However,	the	engine	will	not	be
able	to	correctly	compute	time-intelligence	functions	if	the	same	date	appears
multiple	times.
So	what	can	you	do	if	you	need	to	handle	time	too?	The	easiest	and	most

efficient	solution	is	to	create	one	dimension	for	the	date	and	a	separate	dimension
for	the	time.	You	can	easily	create	a	time	dimension	by	using	a	simple	piece	of	M
code	in	Power	Query,	like	the	following:
Click	here	to	view	code	image

Let

				StartTime	=	#datetime(1900,1,1,0,0,0),

				Increment	=	#duration(0,0,1,0),

				Times	=	List.DateTimes(StartTime,	24*60,	Increment),

				TimesAsTable	=	Table.FromList(Times,Splitter.SplitByNothing()),

				RenameTime	=	Table.RenameColumns(TimesAsTable,

{{"Column1",	"Time"}}),

				ChangedDataType	=	Table.TransformColumnTypes(RenameTime,

{{"Time",	type	time}}),

				AddHour	=	Table.AddColumn(

								ChangedDataType,

								"Hour",

								each	Text.PadStart(Text.From(Time.Hour([Time])),	2,	"0")

),

				AddMinute	=	Table.AddColumn(

								AddHour,

								"Minute",

								each	Text.PadStart(Text.From(Time.Minute([Time])),	2,	"0")

),

				AddHourMinute	=	Table.AddColumn(

								AddMinute,

								"HourMinute",	each	[Hour]	&	":"	&	[Minute]

),

				AddIndex	=	Table.AddColumn(

								AddHourMinute,

								"TimeIndex",

								each	Time.Hour([Time])	*	60	+	Time.Minute([Time])

),

				Result	=	AddIndex

in

				Result

The	script	generates	a	table	like	the	one	shown	in	Figure	4-18.	The	table
contains	a	TimeIndex	column	(with	the	numbers	from	0	to	1439),	which	you	can
use	to	link	the	fact	table,	and	a	few	columns	to	slice	your	data.	If	your	table
contains	a	different	column	for	the	time,	you	can	easily	modify	the	previous	script
to	generate	a	time	as	the	primary	key.

FIGURE	4-18	This	is	a	simple	time	table	that	is	generated	with	Power	Query.

The	time	index	is	computed	by	multiplying	the	hours	by	60	and	adding	the
minutes,	so	it	can	be	easily	included	as	a	key	in	your	fact	table.	This	calculation
should	be	done	in	the	data	source	that	feeds	the	table.
Using	a	separate	time	table	lets	you	slice	data	by	hours,	minutes,	or	different

columns	that	you	might	add	to	the	time	table.	Frequent	options	are	periods	of	the
day	(morning,	afternoon,	or	night)	or	time	ranges—for	example	hourly	ranges,	like
the	ones	we	used	in	the	report	in	Figure	4-19.

FIGURE	4-19	The	time	dimension	is	useful	to	generate	reports	that	show	sales
divided	by	hour,	for	example.

There	are	scenarios,	however,	where	you	do	not	need	to	stratify	numbers	by
time	ranges.	For	example,	you	might	want	to	compute	values	based	on	the
difference	in	hours	between	two	events.	Another	scenario	is	if	you	need	to
compute	the	number	of	events	that	happened	between	two	timestamps,	with	a
granularity	below	the	day.	For	example,	you	might	want	to	know	how	many
customers	entered	your	shop	between	8:00	a.m.	on	January	1st	and	1:00	p.m.	on
January	7th.	These	scenarios	are	a	bit	more	advanced,	and	they	are	covered	in
Chapter	7,	“Analyzing	date	and	time	intervals.”

Time-intelligence	calculations
If	your	data	model	is	prepared	in	the	correct	way,	time-intelligence	calculations
are	easy	to	author.	To	compute	time	intelligence,	you	need	to	apply	a	filter	on	the
Calendar	table	that	shows	the	rows	for	the	period	of	interest.	There	is	a	rich	set	of
functions	that	you	can	use	to	obtain	these	filters.	For	example,	a	simple	YTD	can
be	written	as	follows:
Click	here	to	view	code	image

Sales	YTD	:=

CALCULATE	(

				[Sales	Amount],

				DATESYTD	('Date'[Date])

)

DATESYTD	returns	the	set	of	dates	starting	from	the	1st	of	January	of	the
currently	selected	period	and	reaching	the	last	date	included	in	the	context.	Other
useful	functions	are	SAMEPERIODLASTYEAR,	PARALLELPERIOD,	and
LASTDAY.	You	can	combine	these	functions	to	obtain	more	complex	aggregations.
For	example,	if	you	need	to	compute	YTD	of	the	previous	year,	you	can	use	the
following	formula:
Click	here	to	view	code	image

Sales	PYTD	:=

CALCULATE	(

				[Sales	Amount],

				DATESYTD	(SAMEPERIODLASTYEAR	('Date'[Date]))

)

Another	very	useful	time-intelligence	function	is	DATESINPERIOD,	which
returns	the	set	of	dates	in	a	given	period.	It	can	be	useful	for	computing	moving
averages,	like	in	the	following	example,	where	DATESINPERIOD	returns	the
last	12	months,	using	the	last	date	in	the	filter	context	as	a	reference	point:
Click	here	to	view	code	image

Sales	Avg12M	:=

CALCULATE	(

				[Sales	Amount]	/	COUNTROWS	(VALUES	('Date'[Month])),

				DATESINPERIOD	(

								'Date'[Date],

								MAX	('Date'[Date]),

								-12,

								MONTH

)

)

You	can	see	the	result	of	this	average	in	Figure	4-20.

FIGURE	4-20	The	measure	computes	the	average	over	12	months.

Handling	fiscal	calendars
Another	very	good	reason	you	should	create	your	own	Calendar	table	is	that	it
makes	it	very	easy	to	work	with	a	fiscal	calendar.	Alternatively,	in	more	extreme
situations,	you	can	work	with	more	complex	calendars,	like	weekly	or	seasonal
calendars.
When	handling	a	fiscal	calendar,	you	do	not	need	to	add	additional	columns	to

your	fact	table.	Instead,	you	simply	add	a	set	of	columns	to	your	Date	table	so	that
you	will	be	able	to	slice	by	using	both	the	standard	and	the	fiscal	calendar.	As	an
example,	imagine	you	need	to	handle	a	fiscal	calendar	that	sets	the	first	month	of
the	year	as	July.	Thus,	the	calendar	goes	from	July	1st	to	June	30th.	In	such	a
scenario,	you	need	to	modify	the	calendar	so	that	it	shows	fiscal	months,	and	you
will	need	to	modify	some	calculations	to	make	them	work	with	fiscal	calendars.
First,	you	need	to	add	a	suitable	set	of	columns	to	hold	the	fiscal	months	(if	they

are	not	yet	there	already).	Some	people	prefer	to	see	July	as	the	name	of	the	first
fiscal	month,	whereas	other	people	prefer	to	avoid	month	names	and	use	numbers
instead.	Thus,	by	using	numbers,	they	browse	the	month	as	Fiscal	Month	01
instead	of	July.	For	this	example,	we	use	the	standard	names	for	months.
No	matter	which	naming	technique	you	prefer,	for	proper	sorting,	you	will	need

an	additional	column	to	hold	the	fiscal	month	name.	In	standard	calendars,	you
have	a	Month	Name	column,	which	is	sorted	by	Month	Number,	so	that	January	is

put	in	the	first	place	and	December	in	the	last	place.	In	contrast,	when	using	the
fiscal	calendar,	you	want	to	put	July	as	the	first	month	and	June	as	the	last	one.
Because	you	cannot	sort	the	same	column	using	different	sorters,	you	will	need	to
replicate	the	month	name	in	a	new	column,	Fiscal	Month,	and	create	a	new	sort
column	that	sorts	the	fiscal	month	the	way	you	want.
After	these	steps	are	done,	you	can	browse	the	model	using	columns	in	your

Calendar	table,	and	you	can	have	the	months	sorted	the	right	way.	Nevertheless,
some	calculations	will	not	work	as	expected.	For	example,	look	at	the	Sales	YTD
calculation	in	the	PivotTable	shown	in	Figure	4-21.

FIGURE	4-21	The	YTD	calculation	does	not	work	correctly	with	the	fiscal

calendar.

If	you	look	carefully	at	the	PivotTable,	you	can	see	that	the	value	of	YTD	is
reset	in	January	2008	instead	of	July.	This	is	because	the	standard	time-
intelligence	functions	are	designed	to	work	with	standard	calendars,	and	because
of	that,	they	do	not	work	with	custom	calendars.	Some	functions	have	an
additional	parameter	that	can	instruct	them	on	how	to	work	with	fiscal	calendars.
DATESYTD,	the	function	used	to	compute	YTD,	is	among	them.	To	compute	YTD
with	a	fiscal	calendar,	you	can	add	a	second	parameter	to	DATESYTD	that
specifies	the	day	and	month	at	which	the	calendar	ends,	like	in	the	following	code:
Click	here	to	view	code	image

Sales	YTD	Fiscal	:=

CALCULATE	(

				[Sales	Amount],

				DATESYTD	('Date'[Date],		"06/30")

)

Figure	4-22	shows	the	PivotTable	with	the	standard	YTD	and	the	fiscal	YTD,
side-by-side.

FIGURE	4-22	Sales	YTD	Fiscal	resets	correctly,	at	the	end	of	July.

Obviously,	different	calculations	might	require	different	approaches,	but	the
standard	time-	intelligence	functions	provided	in	DAX	can	be	easily	adapted	to
fiscal	calendars.	In	the	last	section	of	this	chapter	we	will	cover	weekly
calendars,	which	are	another	useful	variation	on	calendars.	If	you	have	different
needs,	or	if	you	need	to	work	with	even	more	complex	calendars,	then	you	need	to
follow	a	more	complex	approach;	we	suggest	you	look	at	the	time-intelligence
patterns	at	http://www.daxpatterns.com/time-patterns/.
The	important	point	for	the	sake	of	this	book	is	that	you	do	not	need	additional

tables	to	handle	fiscal	calendars	in	a	smooth	way.	If	your	Date	table	is	designed

http://www.daxpatterns.com/time-patterns/

and	used	the	right	way,	then	handling	different	calendars	is	very	simple	and	can	be
achieved	by	simply	updating	your	Calendar	table.
If	you	let	Power	BI	Desktop	or	Excel	handle	the	creation	of	time-intelligence

columns	for	you,	then	you	cannot	adopt	this	simple	technique.	You	will	be	on	your
own	in	trying	to	figure	out	how	to	write	the	correct	formulas.

Computing	with	working	days
Not	all	days	are	working	days.	Often,	you	need	to	perform	calculations	that	take
into	account	this	difference.	For	example,	you	might	want	to	compute	the
difference	between	two	dates	expressed	in	working	days,	or	you	might	want	to
compute	the	number	of	working	days	in	a	given	period.	In	this	section,	we	discuss
the	options	for	handling	working	days	from	the	data-modeling	point	of	view.
The	first	(and	most	important)	consideration	is	whether	a	day	is	always	a

working	day,	or	if	this	information	might	depend	on	other	factors.	For	example,	if
you	work	with	different	countries,	then	it	is	very	likely	that	a	given	day	could	be	a
working	day	in	one	country	or	region	and	a	holiday	in	another.	Thus,	a	day	might
be	a	working	day	or	not,	depending	on	the	country	or	region.	As	you	will	see,	you
need	more	complex	models	for	holidays	depending	on	the	country	or	region.	It	is
better	to	start	by	looking	at	the	simpler	model,	which	is	the	one	with	holidays	for	a
single	country	or	region.

Working	days	in	a	single	country	or	region
We	will	start	with	a	simple	data	model	that	includes	Date,	Product,	and	Sales
tables,	although	we	will	focus	on	Date.	Our	starting	Date	table	looks	like	the	one
shown	in	Figure	4-23.

FIGURE	4-23	The	starting	point	of	a	working-days	analysis	is	a	simple	Date
table.

The	table	contains	no	information	about	whether	a	day	is	a	working	day	or	not.
For	this	example,	let	us	presume	there	are	two	kinds	of	non-working	days:
weekends	and	holidays.	If,	in	your	country,	the	weekend	is	on	Saturday	and
Sunday,	then	you	can	easily	create	a	calculated	column	that	tells	you	whether	a	day
is	a	weekend	or	not,	like	in	the	following	code.	If	the	weekend	is	on	different
days,	then	you	will	need	to	change	the	following	formula	to	make	it	work	in	your
specific	scenario:
Click	here	to	view	code	image

'Date'[IsWorkingDay]	=

INT	(

				AND	(

								'Date'[Day	of	Week	Number]	<>	1,

								'Date'[Day	of	Week	Number]	<>	7

)

)

We	converted	the	Boolean	condition	to	an	integer	to	make	it	easier	to	sum	its
value	and	count	the	number	of	working	days.	In	fact,	the	number	of	working	days
in	a	period	is	easy	to	obtain	with	a	measure	like	the	following	one:
Click	here	to	view	code	image

NumOfWorkingDays	=	SUM	('Date'[IsWorkingDay])

This	measure	already	computes	a	good	number,	as	shown	in	Figure	4-24.

FIGURE	4-24	NumOfWorkingDays	computes	the	number	of	working	days	for	any
period	selected.

So	far,	we	have	accounted	for	Saturdays	and	Sundays.	There	are	also	holidays
to	take	into	account,	however.	For	this	example,	we	gathered	the	list	of	US	federal
holidays	in	2009	from	www.timeanddate.com.	We	then	used	the	query	editor	in
Power	BI	Desktop	to	generate	the	table	shown	in	Figure	4-25.

FIGURE	4-25	The	Holidays	table	shows	a	list	of	US	federal	holidays.

At	this	point,	you	have	two	options,	depending	on	whether	the	Date	column	in
the	Holidays	table	is	a	key.	If	so,	you	can	create	a	relationship	between	Date	and
Holidays	to	generate	a	model	like	the	one	shown	in	Figure	4-26.

FIGURE	4-26	Holidays	can	be	related	to	the	model	easily	if	Date	is	a	primary
key.

After	the	relationship	is	set,	you	can	modify	the	code	for	the	IsWorkingDay
calculated	column	to	add	a	further	check.	This	check	notes	that	a	given	day	is	a
working	day	if	it	is	not	Saturday	or	Sunday	or	it	does	not	appear	in	the	Holidays
table.	Observe	the	following	code:
Click	here	to	view	code	image

'Date'[IsWorkingDay]	=

http://www.timeanddate.com

INT	(

				AND	(

								AND	(

												'Date'[Day	of	Week	Number]	<>	1,

												'Date'[Day	of	Week	Number]	<>	7

),

								ISBLANK	(RELATED	(Holidays[Date]))

)

)

This	model	is	very	similar	to	a	star	schema.	It	is	a	snowflake,	and	because	of
the	small	size	of	both	the	Date	and	the	Holidays	tables,	performance	is	totally	fine.
Sometimes,	the	Date	column	in	the	Holidays	table	is	not	a	key.	For	example,	if

multiple	holidays	fall	on	the	same	day,	you	will	have	multiple	rows	in	Holidays
with	the	same	date.	In	such	cases,	you	must	modify	the	relationship	as	a	one-to-
many,	with	Date	as	the	target	and	Holidays	as	the	source	(remember,	Date	is
definitely	a	primary	key	in	the	Date	table),	and	change	the	code	as	follows:
Click	here	to	view	code	image

'Date'[IsWorkingDay]	=

INT	(

				AND	(

								AND	(

												'Date'[Day	of	Week	Number]	<>	1,

												'Date'[Day	of	Week	Number]	<>	7

),

								ISEMPTY	(RELATEDTABLE	(Holidays))

)

)

The	only	line	changed	is	the	one	that	checks	whether	the	date	appears	in	the
Holidays	table.	Instead	of	using	the	faster	RELATED,	you	use	RELATEDTABLE
and	verify	its	emptiness.	Because	we	are	working	with	a	calculated	column,	the
small	degradation	in	performance	is	completely	acceptable.

Working	with	multiple	countries	or	regions
As	you	have	learned,	modeling	holidays	when	you	only	need	to	manage	a	single
country	is	pretty	straightforward.	Things	become	more	complex	if	you	need	to
handle	holidays	in	different	countries.	This	is	because	you	can	no	longer	rely	on

calculated	columns.	In	fact,	depending	on	the	country	selection,	you	might	have
different	values	for	the	IsHoliday	column.
If	you	only	have	a	couple	of	countries	to	handle,	then	the	simplest	solution	is	to

create	two	columns	for	IsHoliday—for	example,	IsHolidayChina	and
IsHolidayUnitedStates—and	then	use	the	correct	column	for	various	measures.	If
you	are	dealing	with	more	than	two	countries,	however,	then	this	technique	is	no
longer	viable.	Let	us	examine	the	scenario	in	its	full	complexity.	Note	that	the
Holidays	table	has	different	content	from	before,	as	shown	in	Figure	4-27.
Specifically,	the	Holidays	table	contains	a	new	column	that	indicates	the	country
or	region	where	the	holiday	is	defined:	CountryRegion.	The	date	is	no	longer	a
key	because	the	same	date	can	be	a	holiday	in	different	countries.

FIGURE	4-27	This	Holidays	table	contains	holidays	in	different	countries.

The	data	model	is	a	slight	variation	of	the	previous	model,	as	shown	in	Figure
4-28.	The	main	difference	is	that	the	relationship	between	Date	and	Holidays	is
now	in	the	opposite	direction.

FIGURE	4-28	The	data	model	with	different	countries	looks	similar	to	the	model
with	a	single	country.

The	problem	with	multiple	countries	is	that	you	need	to	better	understand	the
meaning	of	the	numbers	to	produce.	The	simple	question	of	“how	many	working
days	are	in	January?”	no	longer	has	a	clear	meaning.	In	fact,	unless	you	specify	a
country,	the	number	of	working	days	cannot	be	computed	anymore.
To	better	understand	the	issue,	consider	Figure	4-29.	The	measure	in	the	report

is	just	a	COUNTROWS	of	the	Holidays	table,	so	it	computes	the	number	of
holidays	in	each	country.

FIGURE	4-29	The	figure	shows	the	number	of	holidays	per	country	and	month.

The	numbers	are	correct	for	each	given	country,	but	at	the	total-per-month	level,
they	are	just	a	sum	of	the	individual	cells;	the	total	does	not	consider	that	one	day
might	be	a	holiday	in	one	country	and	not	a	holiday	in	another.	In	February,	for
example,	there	is	a	single	holiday	in	the	United	States,	but	no	holidays	in	either
China	or	Germany.	Thus,	what	is	the	total	number	of	holidays	in	February?	The
question,	posed	in	this	way,	makes	little	sense	if	you	are	interested	in	comparing
holidays	with	working	days,	for	example.	In	fact,	the	cumulative	total	number	of
holidays	for	all	countries	isn’t	helpful	at	all.	The	answer	strongly	depends	on	the
country	you	are	analyzing.
At	this	point	in	the	definition	of	the	model,	you	need	to	better	clarify	the

meaning	of	whether	a	day	is	a	working	day	or	not.	Before	your	computation,	you
can	check	whether	a	single	country	has	been	selected	in	the	report	by	using	the	IF
(HASONEVALUE	())	pattern	of	DAX.
There	is	another	point	to	observe	before	reaching	the	final	formula.	You	might

want	to	compute	the	number	of	working	days	by	subtracting	the	number	of
holidays	(retrieved	from	the	Holidays	table)	from	the	total	number	of	days.	In
doing	so,	however,	you	are	not	taking	into	account	Saturdays	and	Sundays.
Moreover,	if	a	holiday	happens	to	be	on	a	weekend,	then	you	do	not	need	to	take	it
into	account,	either.	You	can	solve	this	problem	by	using	the	bidirectional	filtering
pattern	and	counting	the	dates	that	are	neither	Saturday	nor	Sunday	and	that	do	not
appear	in	the	Holidays	table.	Thus,	the	formula	would	be	as	follows:
Click	here	to	view	code	image

NumOfWorkingDays	:=

IF	(

				OR	(

								HASONEVALUE	(Holidays[CountryRegion]),

								ISEMPTY	(Holidays)

),

				CALCULATE	(

								COUNTROWS	('Date'),

								AND	(

												'Date'[Day	of	Week	Number]	<>	1,

												'Date'[Day	of	Week	Number]	<>	7

),

								EXCEPT	(VALUES	('Date'[Date]),	VALUES	(Holidays[Date]))

)

)

There	are	two	interesting	points	in	this	formula,	which	are	highlighted	with	a
bold	font.	Following	is	an	explanation	of	both:

	You	need	to	check	that	there	is	only	a	single	value	for	CountryRegion	to
protect	the	measure	from	showing	numbers	when	multiple	countries	or
regions	are	selected.	At	the	same	time,	
you	need	to	check	if	the	Holidays	table	is	empty,	because	for	months	with	no
holidays,	the	CountryRegion	column	will	have	zero	values	and
HASONEVALUE	will	return	False.
	As	a	filter	for	CALCULATE,	you	can	use	the	EXCEPT	function	to	retrieve
the	dates	that	are	not	holidays.	This	set	will	be	put	in	a	logical	AND	with
the	set	of	days	that	are	not	in	the	weekend,	producing	the	final	correct	result.

Still,	the	model	is	not	yet	perfect.	In	fact,	we	are	assuming	that	weekends
always	happen	during	Saturday	and	Sunday,	but	there	are	several	countries	and
regions	where	the	weekend	falls	on	different	days.	If	you	need	to	take	this	into
account,	then	you	must	make	the	model	slightly	more	complex.	You	will	need
another	table	that	contains	the	weekdays	that	are	to	be	considered	part	of	the
weekend	on	a	country-by-country	basis.	Because	you	have	two	different	tables
that	need	to	be	filtered	by	country,	you	will	need	to	transform	the	country	into	a
dimension	by	itself.	The	complete	model	is	shown	in	Figure	4-30.

FIGURE	4-30	The	complete	model	contains	a	dedicated	table	for	weekends	and
a	Country/Regions	dimension.

The	code	is	indeed	slightly	simpler,	although	it	may	be	a	bit	harder	to	read,	as
shown	in	the	following:
Click	here	to	view	code	image

NumOfWorkingDays	:=

IF	(

				HASONEVALUE	(CountryRegions[CountryRegion]),

				CALCULATE	(

								COUNTROWS	('Date'),

								EXCEPT	(

												VALUES	('Date'[Day	of	Week	Number]),

												VALUES	(Weekends[Day	of	Week	Number])

),

								EXCEPT	(VALUES	('Date'[Date]),	VALUES	(Holidays[Date]))

)

)

This	latter	formula	uses	the	same	pattern	of	the	EXCEPT	function	that	is	used
for	holidays	and	the	weekday	number.	It	takes	into	account	the	weekday	number
that	needs	to	be	considered	as	a	nonworking	day	in	the	given	country.

	Note

When	the	model	becomes	more	complex,	you	need	to	author	more
complex	DAX	code.	More	importantly,	you	need	to	clarify	exactly
how	to	compute	the	numbers.	In	the	presence	of	multiple	countries,
the	simple	formulas	used	for	a	single	country	no	longer	work.	As	a
data	modeler,	you	need	to	work	harder	to	define	meaningful	formulas.

Handling	special	periods	of	the	year
When	dealing	with	time	intelligence,	you	typically	need	to	highlight	and	handle
specific	periods	of	the	year.	For	example,	if	you	are	analyzing	the	booking	of
hotels,	the	Easter	period	is	relevant,	and	you	might	want	to	compare	the
performance	of	Easter	in	different	years.	The	problem	is	that	Easter	falls	on
different	dates	every	year.	Thus,	you	need	to	identify	a	variable	period	of	the	year
to	make	comparisons.
Another	common	requirement	is	to	build	reports	or	dashboards	that

automatically	update	their	content	based	on	the	date	of	refresh.	For	example,
suppose	you	want	a	dashboard	that	compares	the	sales	of	the	current	month	against
the	previous	one.	This	time	the	problem	is	that	the	very	concept	of	a	current	month
depends	on	the	current	day.	Today,	the	current	month	may	be	April,	but	for	the
same	day	next	month,	it	will	be	May,	and	you	don’t	want	to	have	to	update	the
filters	of	the	dashboard	each	and	every	month.
As	with	working	days,	there	is	a	difference	in	the	data	model	depending	on

whether	the	periods	you	want	to	analyze	are	overlapping	or	not.

Using	non-overlapping	periods
If	the	periods	of	time	you	want	to	analyze	are	non-overlapping,	then	the	data
model	is	somewhat	easy	to	build.	Similarly	to	what	you	did	with	holidays	in	the
previous	sections,	you	first	need	a	configuration	table	to	store	the	periods	you
want	to	analyze.	In	our	example,	we	created	a	table	with	the	Easter	and	Christmas
dates	for	2008,	2009,	and	2010,	because	we	want	them	to	be	a	period	in	time
instead	of	a	single	date	(as	was	the	case	for	the	holidays).	The	configuration	table
is	shown	in	Figure	4-31.

FIGURE	4-31	The	figure	shows	the	configuration	of	special	periods	in	the
SpecialPeriods	table.

Each	Easter	period	starts	some	days	before	the	given	date	and	ends	a	few	days
after.	Even	if	the	SpecialPeriods	table	contains	a	date	that	is	also	a	primary	key
for	the	table,	it	does	not	make	any	sense	to	build	a	relationship.	In	fact,	the	only
relevant	information	in	SpecialPeriods	is	the	name	of	the	period	we	want	to
analyze,	and	it	is	better	to	denormalize	the	special	period	description	in	a
calculated	column	in	Date.	To	do	so,	use	the	following	code:
Click	here	to	view	code	image

'Date'[SpecialPeriod]	=

CALCULATE	(

				VALUES	(SpecialPeriods[Description]),

				FILTER	(

								SpecialPeriods,

								AND	(

												SpecialPeriods[Date]	-	SpecialPeriods[DaysBefore]	<=	'Date'[Date],

												SpecialPeriods[Date]	+	SpecialPeriods[DaysAfter]	>	'Date'[Date]

)

)

)

The	column	will	store	the	special	period	name	if	the	current	date	falls	between
the	following:

	The	date	of	the	special	period	minus	the	number	of	days	before	it
	The	same	date	plus	the	number	of	days	after	it

You	can	see	the	result	of	this	calculated	column	for	Easter	2008	in	Figure	4-32.

FIGURE	4-32	When	a	date	falls	in	a	special	period,	it	is	marked	with	the	period
name.

Once	the	column	is	in	place,	it	will	filter	different	periods	in	different	years.
This	makes	it	possible	to	compare	the	sales	of	the	same	special	period	in	different
years	without	worrying	about	when	it	occurred.	You	can	see	this	in	Figure	4-33.

FIGURE	4-33	This	report	shows	sales	for	Easter	and	Christmas	in	2008	and
2009.

This	technique	works	fine,	and	it	is	very	simple	to	implement,	but	it	comes	with
a	severe	limitation:	The	periods	cannot	overlap.	In	fact,	if	you	store	overlapping
periods	in	the	configuration	table,	the	column	will	produce	an	error	for	all	the
rows	that	belong	to	different	periods.	Nevertheless,	there	are	many	scenarios
where	this	limitation	is	not	an	issue.	In	this	case,	it	is	the	easiest	way	to	handle
special	periods.	You	learn	how	to	handle	overlapping	periods	later	in	this	chapter
in	the	section	“Using	overlapping	periods.”

Periods	relative	to	today
In	the	previous	section,	you	learned	how	to	handle	non-overlapping	special
periods	by	storing	the	information	in	a	configuration	table.	You	can	adopt	a	very

similar	technique	to	create	reports	that	update	their	content	in	a	dynamic	way.
Imagine,	for	example,	that	you	want	to	build	a	dashboard	like	the	one	in	Figure	4-
34,	which	shows	sales	of	different	brands	over	different	time	periods	along	with	a
gauge	that	compares	the	sales	of	today	against	the	sales	of	yesterday.

FIGURE	4-34	The	report	contains	a	gauge,	suitable	for	a	dashboard,	that	shows
the	sales	of	today	versus	yesterday.

The	very	concept	of	today	depends	on	when	the	report	was	last	refreshed.	Of
course,	you	do	not	want	to	hard-code	the	date	into	the	formulas.	What	you	want	is
that	every	time	you	refresh	the	model,	it	automatically	checks	what	the	last
available	date	in	the	model	is	and	adapts	its	content	accordingly.	In	such	a	case,
you	can	use	a	variation	of	the	previous	data	model	where,	this	time,	the	time
periods	are	computed	in	a	dynamic	way.
First,	you	need	to	prepare	a	configuration	table,	like	the	one	shown	in	Figure	4-

35,	where	you	store	the	descriptions	of	the	periods	along	with	the	number	of	days,
relative	to	today,	to	consider.

FIGURE	4-35	The	RelativePeriods	configuration	table	displays	the	special
periods	that	are	relative	to	the	current	day.

Each	period	has	the	number	of	days	before	today,	a	description,	and	a	code.
The	days	falling	between	DatesFrom	and	DaysTo,	relative	to	today,	will	be	tagged
with	the	description.	The	code	is	mainly	useful	for	sorting	purposes.	Once	the
table	is	in	place,	you	need	to	retrieve	the	code	(for	sorting)	and	the	description	to
tag	each	date	as	belonging	to	the	appropriate	period.	This	can	be	easily
accomplished	through	two	calculated	columns	in	Date.	The	first	one	computes	the

code	of	the	relative	period	and	is	the	following	definition:
Click	here	to	view	code	image

'Date'[RelPeriodCode]	=

VAR	LastSalesDateKey	=

				MAX	(Sales[OrderDateKey])

VAR	LastSaleDate	=

				LOOKUPVALUE('Date'[Date],	'Date'[DateKey],	LastSalesDateKey)

VAR	DeltaDays	=

				INT	(LastSaleDate	-	'Date'[Date])

VAR	ValidPeriod	=

				CALCULATETABLE(

								RelativePeriods,

								RelativePeriods[DaysTo]	>=	DeltaDays,

								RelativePeriods[DaysFrom]	<	DeltaDays

)

RETURN

				CALCULATE	(VALUES	(RelativePeriods[Code]),	ValidPeriod)

This	code	performs	all	its	steps	through	the	usage	of	variables.	First,	it
retrieves	the	last	OrderDateKey	from	Sales	to	grab	the	key	of	the	last	available
date,	which	we	will	consider	as	today.	Once	it	has	the	key,	it	uses
LOOKUPVALUE	to	compute	the	date	associated	with	the	key.	DeltaDays
represents	the	difference	between	today	and	the	current	date.	All	those	values	are
finally	used	in	CALCULATETABLE	to	compute,	in	ValidPeriod,	the	only	row
of	the	RelativePeriods	table	that	includes	DeltaPeriod	between	DaysFrom
and	DaysTo.
The	result	of	this	formula	is	the	code	of	the	relative	period	to	which	the	given

date	belongs.	Once	the	calculated	column	with	the	code	is	there,	you	can	compute
the	description	of	the	relative	period	as	follows:
Click	here	to	view	code	image

'Date'[RelPeriod]	=

VAR	RelPeriod	=

				LOOKUPVALUE(

								RelativePeriods[Description],

								RelativePeriods[Code],

								'Date'[RelPeriodCode]

)

RETURN

				IF	(ISBLANK	(RelPeriod),	"Future",	RelPeriod)

The	two	columns	(RelPeriodCode	and	RelPeriod)	are	shown	in	the	Date	table
in	Figure	4-36.

FIGURE	4-36	The	last	two	columns	are	computed	using	the	formulas	described
in	the	previous	paragraphs.

Being	calculated	columns,	they	are	recomputed	at	every	refresh	of	the	data
model.	In	this	way,	they	change	the	tags	assigned	to	the	dates.	You	do	not	need	to
update	the	report,	as	it	will	always	show	the	last	processed	day	as	today,	the	day
before	as	yesterday,	and	so	on.

Using	overlapping	periods
The	techniques	you	have	seen	in	the	previous	sections	work	fine,	but	they	all	have
one	strong	limitation:	The	time	periods	cannot	overlap.	In	fact,	because	you	store
the	attribute	that	defines	the	time	period	in	a	calculated	column,	there	can	only	be
one	value	assigned	to	the	column.
There	are,	however,	scenarios	where	this	is	not	possible.	Suppose,	for

example,	that	you	put	some	product	categories	on	sale	in	different	periods	of	the
year.	It	is	totally	possible	that,	in	the	same	period,	more	than	one	product	category
is	on	sale.	At	the	same	time,	the	same	category	might	be	on	sale	during	multiple
different	time	periods.	Thus,	in	such	a	scenario,	you	cannot	store	the	period	of
sales	in	the	Products	table	or	in	the	Date	table.
A	scenario	in	which	you	have	many	rows	(categories)	that	need	to	be	in

relationships	with	many	rows	(dates)	is	known	as	a	many-to-many	model.	Many-
to-many	models	are	not	easy	to	manage,	but	they	provide	extremely	useful
analyses	and	are	worth	describing.	You	will	find	a	much	more	complete
discussion	on	many-to-many	models	in	Chapter	8,	“Many-to-many	relationships.”
In	this	section,	we	only	want	to	show	that	when	many-to-many	relationships	are
involved,	the	code	tends	to	be	harder	to	write.
The	Discounts	configuration	table	from	this	example	is	shown	in	Figure	4-37.

FIGURE	4-37	Different	sales	periods	for	different	categories	are	stored	in	the
Discounts	configuration	table.

Looking	at	the	Discounts	configuration	table,	you	can	see	that	in	the	first	week
of	January	2007	and	2008,	there	are	multiple	categories	on	sale	(computers	and
audio).	The	same	applies	to	the	first	two	weeks	of	August	(audio	and	cell	phones).
In	such	a	scenario,	you	can	no	longer	rely	on	relationships,	and	you	need	to	write
DAX	code	that	takes	the	current	filter	from	the	sale	period	and	merges	it	with	the
already	existing	filter	in	Sales.	This	is	accomplished	by	the	following	formula:
Click	here	to	view	code	image

SalesInPeriod	:=

SUMX	(

				Discounts,

				CALCULATE	(

								[Sales	Amount],

								INTERSECT	(

												VALUES	('Date'[Date]),

												DATESBETWEEN	('Date'[Date],	Discounts[DateStart],	Discounts[DateEnd])

),

								INTERSECT	(

												VALUES	('Product'[Category]),

												CALCULATETABLE	(VALUES	(Discounts[Category]))

)

)

)

Using	this	formula,	you	can	build	reports	like	the	one	shown	in	Figure	4-38.

FIGURE	4-38	When	using	overlapping	periods,	you	can	browse	different	periods
in	the	same	year.

The	report	in	Figure	4-38	shows	the	sales	of	different	categories	over	different
years,	even	if	the	periods	overlap.	In	this	case,	the	model	remained	fairly	simple
because	we	could	not	rely	on	changes	in	the	model	to	make	the	code	easier	to
write.	You	will	see	several	examples	similar	to	this	one	in	Chapter	7,	but	in	that
chapter	we	will	also	create	different	data	models	to	show	how	to	write	simpler
(and	maybe	faster)	code.	In	general,	many-to-many	relationships	are	powerful	and
easy	to	use,	but	writing	the	code	to	make	them	work	is	sometimes	(like	in	this
case)	difficult.
The	reason	we	wanted	to	show	you	this	example	is	not	to	scare	you	or	to	show

you	a	scenario	where	the	model	fails	in	making	the	code	simple	to	write.	It	is
simply	that	if	you	want	to	produce	complex	reports,	sooner	or	later,	you	will	need
to	author	complex	DAX	code.

Working	with	weekly	calendars
As	you	learned,	as	long	as	you	work	with	standard	calendars,	you	can	easily
compute	measures	like	year-to-date	(YTD),	month-to-date	(MTD),	and	the	same
period	last	year,	because	DAX	offers	you	a	set	of	predefined	functions	that
perform	exactly	these	types	of	calculation.	This	becomes	much	more	complex	as
soon	as	you	need	to	work	with	non-standard	calendars,	however.

What	is	a	non-standard	calendar?	It	is	any	kind	of	calendar	that	does	not	follow
the	canonical	division	of	12	months,	with	different	days	per	month.	For	example,
many	businesses	need	to	work	with	weeks	instead	of	months.	Unfortunately,	weeks
do	not	aggregate	in	months	or	years.	In	fact,	a	month	is	made	of	a	variable	number
of	weeks,	as	is	a	year.	Moreover,	there	are	some	common	techniques	in	the
handling	of	weekly	based	years,	but	none	are	a	standard	that	can	be	formalized	in
a	DAX	function.	For	this	reason,	DAX	does	not	offer	any	functionality	to	handle
non-standard	calendars.	If	you	need	to	manage	them,	you	are	on	your	own.
Luckily,	even	with	no	predefined	function,	you	can	leverage	certain	modeling

techniques	to	perform	time	intelligence	over	non-standard	calendars.	This	section
does	not	cover	them	all.	Our	goal	here	is	simply	to	show	you	some	examples	that
you	will	probably	need	to	adapt	to	your	specific	needs	in	the	event	you	want	to
adopt	them.	If	you	are	interested	in	more	information	about	this	topic,	you	will
find	a	more	complete	treatment	here:	http://www.daxpatterns.com/time-patterns/.
As	an	example	of	non-standard	calendar,	you	will	learn	how	to	handle	weekly

based	calculations	using	the	ISO	8601	standard.	If	you	are	interested	in	more
information	about	this	way	of	handling	weeks,	you	can	find	it	here:
https://en.wikipedia.org/wiki/ISO_week_date.
The	first	step	is	to	build	a	proper	ISO	Calendar	table.	There	are	many	ways	to

build	one.	Chances	are	you	already	have	a	well-defined	ISO	calendar	in	your
database.	For	this	example,	we	will	build	an	ISO	calendar	using	standard	DAX
and	a	lookup	table,	as	this	provides	a	good	opportunity	to	learn	more	modeling
tricks.
The	calendar	we	are	using	is	based	on	weeks.	A	week	always	starts	on

Monday,	and	a	year	always	starts	when	its	first	week	starts.	Because	of	this,	it	is
very	likely	that	a	year	might	start,	for	example,	on	the	29th	of	December	of	the
previous	year	or	on	the	2nd	of	January	of	the	current	calendar	year.	To	handle	this,
you	can	add	calculated	columns	to	a	standard	Calendar	table	to	compute	the	ISO
Week	number	and	the	ISO	Year	number.	By	using	the	following	definitions,	you
will	be	able	to	create	a	table	that	contains	Calendar	Week,	ISO	Week,	and	ISO
Year	columns,	as	outlined	in	Figure	4-39:
Click	here	to	view	code	image

'Date'[Calendar	Week]	=	WEEKNUM	('Date'[Date],	2)

'Date'[ISO	Week]	=	WEEKNUM	('Date'[Date],	21)

'Date'[ISO	Year]	=

http://www.daxpatterns.com/time-patterns/
https://en.wikipedia.org/wiki/ISO_week_date

CONCATENATE	(

				"ISO	",

				IF	(

								AND	('Date'[ISO	Week]	<	5,	'Date'[Calendar	Week]	>	50),

								YEAR	('Date'[Date])	+	1,

								IF	(

												AND	('Date'[ISO	Week]	>	50,	'Date'[Calendar	Week]	<	5),

												YEAR	('Date'[Date])	-	1,

												YEAR	('Date'[Date])

)

)

)

FIGURE	4-39	The	ISO	year	is	different	from	the	calendar	year	because	ISO
years	always	start	on	Monday.

While	the	week	and	month	can	be	easily	computed	with	a	simple	calculated
column,	the	ISO	month	requires	a	bit	more	attention.	With	the	ISO	standard,	there
are	different	ways	to	compute	the	month	number.	One	is	to	start	by	dividing	the
four	quarters.	Each	quarter	has	three	months,	and	the	months	are	built	using	one	of
three	groupings:	445,	454,	or	544.	The	digits	in	these	numbers	stand	for	the
number	of	weeks	to	include	in	each	month.	For	example,	in	445,	the	first	two
months	in	a	quarter	contain	four	weeks,	whereas	the	last	month	contains	five
weeks.	The	same	concept	applies	to	the	other	techniques.	Instead	of	searching	for
a	complex	mathematical	formula	that	computes	the	month	to	which	a	week	belongs
in	the	different	standard,	it	is	easier	to	build	a	simple	lookup	table	like	the	one
shown	in	Figure	4-40.

FIGURE	4-40	The	Weeks	to	Months	lookup	table	maps	week	numbers	to	months
using	three	columns	(one	for	each	technique).

When	this	Weeks	to	Months	lookup	table	is	in	place,	you	can	use	the
LOOKUPVALUE	function	with	the	following	code:
Click	here	to	view	code	image

'Date'[ISO	Month]	=

CONCATENATE

				"ISO	M",

				RIGHT	(

								CONCATENATE	(

												"00",

												LOOKUPVALUE(

																'Weks	To	Months'[Period445],

																'Weks	To	Months'[Week],

																'Date'[ISO	Week]

),

								2

)

)

The	resulting	table	contains	the	year	and	the	month,	as	shown	in	Figure	4-41.

FIGURE	4-41	The	ISO	month	is	easily	computed	using	a	lookup	table.

Now	that	all	the	columns	are	in	place,	you	can	easily	build	a	hierarchy	and	start
browsing	your	model	splitting	by	ISO	years,	months,	and	weeks.	Nevertheless,	on
such	a	calendar,	computing	values	like	YTD,	MTD,	and	other	time-intelligence
calculations	will	prove	to	be	a	bit	more	challenging.	In	fact,	the	canonical	DAX
functions	are	designed	to	work	only	on	standard	Gregorian	calendars.	They	are
useless	if	your	calendar	is	non-standard.
This	requires	you	to	build	the	time-intelligence	calculations	in	a	different	way

—that	is,	without	leveraging	the	predefined	functions.	For	example,	to	compute
ISO	YTD,	you	can	use	the	following	measure:
Click	here	to	view	code	image

Sales	ISO	YTD	:=

IF	(

				HASONEVALUE	('Date'[ISO	Year]),

				CALCULATE	(

								[Sales	Amount],

								ALL	('Date'),

								FILTER	(ALL	('Date'[Date]),	'Date'[Date]	<=	MAX	('Date'[Date])),

								VALUES	('Date'[ISO	Year])

)

)

As	you	can	see,	the	core	of	the	measure	is	the	set	of	filters	you	need	to	apply	to
the	Calendar	table	to	find	the	correct	set	of	dates	that	compose	the	YTD.	Figure	4-
42	shows	the	result.

FIGURE	4-42	The	ISO	YTD	measure	computes	YTD	for	the	ISO	calendar,	which
is	a	non-standard	calendar.

Computing	month-to-date	(MTD),	quarter-to-date	(QTD),	and	measures	using	a
similar	pattern	is	indeed	very	easy.	Things	get	a	bit	more	complex,	however,	if
you	want	to	compute,	for	example,	calculations	like	the	same	period	last	year.	In
fact,	because	you	cannot	rely	on	the	SAMEPERIODLASTYEAR	function,	you	need
to	work	a	bit	more	on	both	the	data	model	and	the	DAX	code.
To	compute	the	same	period	last	year,	you	need	to	identify	the	date	currently

selected	in	the	filter	context	and	then	find	the	same	set	of	dates	in	the	previous
year.	You	cannot	use	the	Date	column	for	this	because	the	ISO	date	has	a
completely	different	structure	than	the	calendar	date.	Thus,	the	first	step	is	to	add	a
new	column	to	the	Calendar	table	that	contains	the	ISO	day	number	in	the	year.
This	can	be	accomplished	easily	with	the	following	calculated	column:
Click	here	to	view	code	image

Date[ISO	Day	Number]	=	('Date'[ISO	Week]	-	1)	*	7

+	WEEKDAY('Date'[Date],	2)

You	can	see	the	resulting	column	in	Figure	4-43.

FIGURE	4-43	The	ISO	Day	Number	column	shows	the	incremental	number	of
days	in	the	year,	according	to	the	ISO	standard.

This	column	is	useful	because	to	find	the	same	selected	period	in	the	last	year,
you	can	now	use	the	following	code:
Click	here	to	view	code	image

Sales	SPLY	:=

IF	(

				HASONEVALUE	('Date'[ISO	Year	Number]),

				CALCULATE	(

								[Sales	Amount],

								ALL	('Date'),

								VALUES	('Date'[ISO	Day	Number]),

								'Date'[ISO	Year	Number]	=	VALUES	('Date'[ISO	Year	Number])	–

	1

)

)

As	you	can	see,	the	formula	removes	all	filters	from	the	Date	table	and	replaces
them	with	two	new	conditions:

	The	ISO	Year	Number	should	be	the	current	year	reduced	by	one.
	The	ISO	Day	Numbers	need	to	be	the	same.

In	this	way,	no	matter	what	selection	you	have	made	in	the	current	filter	context,
it	will	be	moved	back	by	one	year,	regardless	of	whether	it	is	a	day,	a	week,	or	a
month.
In	Figure	4-44,	you	can	see	the	Sales	SPLY	measure	working	with	a	report

sliced	by	year	and	month.

FIGURE	4-44	In	ISO	Year	2008,	the	Sales	SPLY	measure	reports	the	sales	of	the
same	period	in	2007.

You	can	author	similar	calculations,	like	the	previous	month	and	the	percentage
of	growth	against	the	same	period	in	the	last	year,	using	a	very	similar	technique.
In	scenarios	like	the	latter	one,	adding	a	simple	column	to	the	model	makes	it
extremely	easy	to	compute	values.	Performing	the	same	calculation	without	the
ISO	Day	Number	column	results	in	a	nearly	impossible-to-write	formula.	You	can
find	more	information	and	different	dissertations	on	this	topic	at
http://www.sqlbi.com/articles/week-based-time-intelligence-in-dax/.

Conclusions
Time	intelligence	is	a	very	broad	and	interesting	topic.	It	is	likely	that	any	BI
solution	you	will	ever	author	will	contain	some	portion	devoted	to	time

http://www.sqlbi.com/articles/week-based-time-intelligence-in-dax/

intelligence.	The	most	important	topics	covered	in	this	chapter	are	as	follows:
	Most	(if	not	all)	time-intelligence	calculations	require	the	presence	of	a
Date	table	in	the	model.
	The	creation	of	a	Calendar	table	requires	attention	to	details	like	the	sort
order	of	the	months.
	If	you	have	multiple	dates	in	the	model,	this	does	not	mean	you	need	to	have
multiple	Date	tables.	Using	a	single	Date	table	in	the	model	makes	all	the
calculations	much	easier.	If	you	need	multiple	dates,	you	will	likely	need	to
load	the	Date	table	multiple	times.
	It	is	mandatory	to	separate	date	and	time,	both	for	performance	and
modeling	reasons.

The	remaining	part	of	the	chapter	was	devoted	to	different	scenarios	related	to
time,	such	as	working	days	in	one	or	multiple	countries,	computing	values	for
special	periods	of	the	year	by	using	new	columns	in	the	Date	table	or	new	tables
in	the	model,	and	finally	handling	calculations	with	ISO	calendars.
Due	to	the	vast	amount	of	diversity	that	exists	in	time-intelligence	calculations,

it	is	likely	that	none	of	the	examples	we	have	shown	fit	perfectly	with	your
specific	scenario.	Nevertheless,	you	can	use	these	scenarios	as	inspiration	for
your	own	calculations,	which	will	typically	require	the	creation	of	some	specific
columns	in	the	Date	table	and	the	authoring	of	DAX	code	of	medium	complexity.

Chapter	5.	Tracking	historical	attributes

Data	changes	over	time.	For	some	models	and	reports,	it	is	useful	to	track	both	the
current	and	the	historical	value	of	some	attributes.	For	example,	you	might	need	to
track	the	different	addresses	of	a	customer	over	time.	Or,	you	might	have	a	product
that	changes	some	specifications,	and	you	want	to	perform	an	analysis	of	the	sales
and	performance	with	the	different	characteristics.	Or,	you	may	want	to	track	the
total	sales	at	different	price	points	if	there	is	a	change	in	the	price	of	a	product	or
service.	All	these	are	very	common	scenarios,	and	there	are	some	standard	ways
of	handling	them.
Whenever	it	is	necessary	to	manage	the	changing	nature	of	a	value,	it	becomes	a

matter	of	dealing	with	historical	attributes—or,	in	more	technical	language,
slowly	changing	dimensions.	Slowly	changing	dimensions	are	not	a	difficult	topic,
but	they	come	with	some	hidden	complexity.
In	this	chapter,	we	analyze	several	models	that	show	why	this	is	an	important

aspect	to	consider	when	building	your	reporting	system.	The	models	also	show
how	to	manage	different	scenarios.

Introducing	slowly	changing	dimensions
You	typically	need	to	track	attributes	of	dimensions.	For	example,	you	might	need
to	know	a	customer’s	previous	addresses	so	you	can	analyze	his	or	her	purchases
in	both	the	old	and	new	locations.	Or,	you	might	need	to	know	the	previous
producer	of	some	part	of	your	products	to	analyze	their	quality	and	reliability.
Because	these	attributes	belong	to	dimensions,	and	they	typically	change	slowly
over	time,	they	are	known	as	slowly	changing	dimensions	(SCDs).
Before	diving	into	more	technical	details,	let	us	discuss	briefly	when	and	why

you	need	to	use	an	SCD.	Imagine	that	each	of	your	customers	has	a	sales	person
assigned	to	him.	The	easiest	way	to	store	this	information	is	to	add	the	sales
manager‘s	name	as	an	attribute	of	the	customer.	Over	time,	this	relationship
between	sales	manager	and	customer	can	change,	such	as	when	an	existing
customer	is	assigned	to	a	different	sales	person.	For	example,	a	customer
(Nicholas)	might	have	had	Paul	as	a	sales	manager	until	last	year,	but	then	it
changed	to	Louise.	If	you	simply	update	the	sales	manager’s	name	in	the	Customer
table,	then	when	you	analyze	the	sales	of	Louise,	it	will	look	like	Louise	is
responsible	for	all	the	sales,	including	those	that	Paul	made	in	the	past.	Thus,	the
figures	will	not	be	correct.	You	need	a	data	model	that	correctly	assigns	sales	to

the	manager	who	oversaw	them	at	the	time	when	the	sales	happened.
Depending	on	how	you	handle	variations,	SCDs	are	classified	in	different

categories.	Professionals	have	not	yet	come	to	a	consensus	on	a	unique	taxonomy
for	the	different	ways	to	handle	SCDs.	Apart	from	the	very	basic	scenarios,	more
complex	kinds	of	variations	typically	require	some	creativity	in	their	handling,
and	when	somebody	finds	a	new	way	to	handle	an	SCD,	he	or	she	often	creates	a
new	name	for	it.	When	it	comes	to	naming	things,	data	modelers	love	to	find	new
names	for	everything.
In	this	book,	we	will	try	to	avoid	further	confusion	on	the	topic	by	sticking	with

the	original	definition	of	SCDs:
	Type	1	In	type	1	SCDs,	the	value	stored	in	a	dimension	is	always	the
current	one.	If	you	discover	that	something	changed	during	the	processing	of
your	model,	you	simply	overwrite	the	old	value	with	the	new	one.	You	store
only	the	last	value	of	any	column.	Therefore,	because	you	do	not	actually
track	any	variations,	type	1	SCDs	are	not	really	SCDs.
	Type	2	Type	2	SCDs	are	real	SCDs.	With	type	2	SCDs,	you	store	the
information	multiple	times,	once	for	each	version.	If,	for	example,	a
customer	changes	his	or	her	address,	then	you	will	store	two	rows	for	that
customer:	one	with	the	old	address	and	one	with	the	new	address.	The	rows
in	the	fact	table	will	point	to	the	right	version	of	the	customer.	If	you	slice	by
customer	name,	for	example,	you	will	see	only	one	row.	If,	on	the	other
hand,	you	slice	by	country,	the	numbers	will	be	assigned	to	the	country
where	the	customer	lived	at	the	time	of	the	event.

	Note

Type	1	SCDs	are	extremely	simple.	They	do	not	track	any	historical
information.	For	this	reason,	we	will	discuss	only	type	2	SCDs	in
this	chapter	and	refer	to	type	2	simply	as	SCD.

As	an	example	of	SCDs,	let	us	consider	the	scenario	with	the	changing	sales
manager	discussed	earlier	and	see	how	it	is	handled	in	the	Contoso	database.	In
Contoso,	there	are	multiple	country	managers.	One	manager	can	handle	multiple
countries,	and	the	information	is	stored	in	a	table	containing	two	columns,
CountryRegion	and	Manager,	as	shown	in	Figure	5-1.

FIGURE	5-1	The	CountryManagers	table	contains	the	relationship	between	a
country	or	region	and	its	manager.

With	this	table,	it	is	easy	to	set	up	the	model.	You	can	create	a	relationship
between	CountryRegion	in	the	Customer	table	and	CountryRegion	in	the
CountryManagers	table.	With	the	relationship	in	place,	you	obtain	the	model
shown	in	Figure	5-2.

FIGURE	5-2	You	can	create	a	relationship	between	the	Customer	and
CountryManagers	tables.

When	the	model	is	finished,	you	can	build	a	report	that	shows	the	sales	by
manager	and	continent,	as	shown	in	Figure	5-3.

FIGURE	5-3	This	report	shows	the	sales	divided	by	manager	and	continent.

Although	the	managers	of	the	countries	have	changed	over	time,	the	model	we
are	using	right	now	is	not	correctly	handling	this	information.	For	example,	Louise
oversaw	the	United	States	in	2007,	in	2008	it	was	Paul’s	responsibility,	and	in
2009	it	became	Mark’s	job.	But	the	report	shows	the	sales	in	these	different	years
as	if	they	were	all	generated	by	Mark	because	he	is	the	last	listed	manager	of	the
country.
Suppose	the	CountryManagers	table,	instead	of	relating	the	manager	to	the

country,	were	to	make	this	relationship	dependent	on	time,	as	shown	in	Figure	5-4.

FIGURE	5-4	The	manager	of	United	States	changed	over	time,	as	shown	in	this
table.

Each	line	now	stores	the	start	and	end	year	of	the	relationship.	With	this	new
information,	you	can	no	longer	use	the	CountryRegion	column	to	create	the
relationship	between	customers	and	managers	because	CountryRegion	is	no	longer
a	key	in	the	CountryManagers	table.	Now	the	same	country	or	region	can	appear
multiple	times,	once	for	each	of	the	managers	who	was	assigned	to	it.
The	scenario	suddenly	becomes	much	more	complex,	but	there	are	multiple

ways	to	manage	this.	In	this	chapter,	we	will	show	a	few	of	them	that	help	in
building	an	analytical	report	that	can	track	who	the	manager	was	at	the	time	of	the
sale.	Imagine	the	model	has	already	been	created	by	the	IT	department	managing
the	data	warehouse	and	submitted	to	you.	If	done	correctly,	the	Customer	table	you
receive	will	contain	the	following	two	columns:

	Historical	Manager	This	is	the	manager	of	the	customer	when	the	event
(sale)	happened.
	Current	Manager	This	is	the	current	manager	of	the	customer,	no	matter
who	was	handling	the	customer	at	the	time	of	the	event.

With	this	data	structure	in	place,	you	can	create	analytical	reports	like	the	one
shown	in	Figure	5-5	that	report	the	sales	with	the	historical	manager	instead	of	the
current	one.

FIGURE	5-5	The	sales	sliced	by	historical	manager	correctly	assigns	North
America	to	Louise	in	2007.

Moreover,	you	can	build	reports	that	show	both	the	current	and	the	historical
manager	at	the	same	time,	as	shown	in	Figure	5-6.	This	report	shows	the	sales	in
North	America	(USA	and	Canada),	with	the	actual	manager	and	the	historical	one.

FIGURE	5-6	Using	actual	and	historical	attributes,	you	can	produce	very	detailed
reports.

	Tip

Using	SCDs	in	reports	is	not	easy.	We	suggest	you	look	carefully	at
the	previous	figures	and	get	a	sense	of	the	data	you	are	reading	to
better	understand	the	numbers	that	are	assigned	to	the	current	and
historical	attributes.

You	can	slice	sales	either	by	the	current	manager	or	by	the	historical	one.	As
expected,	the	numbers	show	different	figures.	For	example,	you	can	easily	see	a
dramatic	drop	in	sales	for	the	country	that	is	currently	managed	by	Raoul.	In	2007,
when	it	was	in	the	hands	of	Louise,	North	America	performed	much	better.
Slicing	by	the	current	manager	might	be	useful	to	understand	the	potential	of	the

customers	that	are	managed	by	a	sales	person.	And	you	slice	by	the	historical
attribute	to	evaluate	the	sales	person’s	performances	over	time.	In	the	report,	we
show	both	the	historical	and	the	current	attribute,	enabling	you	to	evaluate	how
sales	performed	with	the	different	managers.
Using	current	and	historical	attributes,	you	can	generate	extremely	powerful

reports.	However,	they	may	be	visually	difficult	to	read.	To	mitigate	this,	it	is
important	to	spend	time	formatting	the	values	and	to	carefully	choose	the	columns
to	include	in	the	report.	A	careful	description	of	the	meaning	of	the	numbers	also
helps.
In	these	first	introductory	pages,	we	have	discussed	some	of	the	most	important

considerations	about	SCDs:
	Both	the	current	and	the	historical	value	are	important.	You	will	use	both,
depending	on	what	kind	of	insight	you	want	to	retrieve	by	querying	the
model.	A	good	implementation	of	an	SCD	should	keep	both	the	historical
and	the	current	value	for	each	record.
	While	the	term	is	slowly	changing	dimensions,	the	dimensions	themselves
do	not	actually	change.	Rather,	it	is	one	or	more	of	the	attributes	of	the
dimensions	that	change.

Now	that	you	have	seen	the	relevance	of	handling	historical	variation	and	the
complexity	that	comes	with	using	an	SCD	in	a	report,	it	is	time	to	start	working	on
the	different	kinds	of	data	models	you	need	to	build	to	gracefully	handle	SCDs.

Using	slowly	changing	dimensions
Having	shown	you	what	SCDs	are,	we	will	now	discuss	some	considerations	with
regard	to	their	use.	Whenever	you	use	an	SCD,	some	of	the	calculations	become
more	complex.	With	standard	dimensions,	each	entity	is	stored	in	a	row	of	its
table.	For	example,	a	customer	is	always	a	single	line	in	the	customer	table.	Yet	if
Customer	is	instead	handled	as	an	SCD,	a	single	customer	might	be	represented
with	multiple	lines	in	its	table	if	there	are	multiple	versions	of	him	or	her.	The
simple	one-to-one	relationship	of	single	customer	to	single	row	no	longer	holds.
Simple	operations,	like	counting	the	number	of	customers,	become	more	complex.
In	the	example	we	outlined	earlier,	we	decided	to	store	the	country	manager	as

one	attribute	of	the	customer.	As	a	result,	there	will	be	multiple	versions	of	the
same	customer,	depending	on	how	many	different	managers	that	customer	had	over
time.	In	fact,	in	the	sample	database	we	use	for	this	book,	there	are	18,869
customers,	but	the	number	of	rows	in	the	Customer	table	is	43,882	due	to	changes
in	the	managers	over	time.	If	you	define	a	simple	measure	to	count	customers,	as
in	the	following	code,	the	result	would	be	incorrect:
Click	here	to	view	code	image

NumOfCustomers	=	COUNTROWS	(Customer)

You	can	see	this	incorrect	result	in	Figure	5-7,	which	shows	the	number	of
customers	sliced	by	the	actual	manager.

FIGURE	5-7	Counting	the	rows	does	not	correctly	count	the	customers,	if	you	are
counting	from	an	SCD.

The	report	is	showing	the	number	of	versions	of	customers,	which	is	clearly	not
the	actual	number	of	customers.	To	correctly	count	the	number	of	customers,	you
need	to	perform	a	distinct	count	of	the	customer	codes.	Use	the	following	code:
Click	here	to	view	code	image

NumOfCustomers	:=	DISTINCTCOUNT	(Customer[Customer

Code])

Using	DISTINCTCOUNT,	the	numbers	are	now	reported	in	the	correct	way,	as
shown	in	Figure	5-8.

FIGURE	5-8	With	DISTINCTCOUNT,	the	numbers	reflect	only	the	unique
customer	codes	and	give	the	correct	amounts.

If	you	want	to	slice	by	one	of	the	attributes	of	the	customer,	replacing
COUNTROWS	with	DISTINCTCOUNT	is	a	good	solution.	The	issue	becomes
more	complex	if	you	want	to	slice	by	a	different	attribute	that	does	not	belong	to
the	customer	dimension.	One	very	common	calculation	is	the	number	of	customers
who	bought	some	category	of	products.	If	you	are	using	a	standard	customer
dimension,	and	not	a	slowly	changing	one,	then	you	can	obtain	this	number	by
simply	performing	a	distinct	count	of	the	customer	key	in	the	fact	table.	In	our
example,	the	code	would	be	as	follows:
Click	here	to	view	code	image

NumOfBuyingCustomers	:=	DISTINCTCOUNT	(

Sales[CustomerKey])

If	you	use	this	in	the	model	with	an	SCD,	you	get	a	result	that	appears
reasonable	but	is	still	incorrect.	The	result	is	shown	in	Figure	5-9.

FIGURE	5-9	The	number	of	buying	customers,	computed	using
DISTINCTCOUNT,	appears	correct	but	it	is	wrong.

By	computing	the	distinct	count	of	the	customer	keys,	you	compute	the	number
of	distinct	versions	of	the	customer,	not	the	real	number	of	customers.	If	you	need
to	count	the	correct	value,	you	must	count	the	number	of	customer	codes	in
Customer	by	using	a	bidirectional	pattern.	You	can	do	this	by	either	marking	the
relationship	between	Customer	and	Sales	as	bidirectional,	or	by	modifying	the
code	using	the	following	pattern:
Click	here	to	view	code	image

NumOfBuyingCustomersCorrect	:=

CALCULATE	(

				DISTINCTCOUNT	(Customers[Customer	Code]),

				Sales

)

Figure	5-10	shows	the	same	report	as	Figure	5-9,	but	with	the	new	measure.
Most	of	the	numbers	are	identical,	and	the	ones	that	are	different	are	still
somewhat	similar.	This	shows	how	easy	it	is	to	get	fooled	by	the	wrong
calculation.

FIGURE	5-10	The	two	measures	side	by	side	show	the	small	difference	between
the	correct	and	incorrect	calculation.

You	might	have	noticed	that	we	used	the	bidirectional	pattern	with	the	Sales
table	as	a	filter	instead	of	the	way	it’s	been	used	more	frequently	in	this	book,
which	involves	creating	a	bidirectional	relationship	between	Sales	and	Customer.
If	you	only	use	the	bidirectional	filtering	of	the	relationship	between	Sales	and
Customer	here,	the	grand	total	will	not	be	correct.	In	fact,	if	you	write	the	measure
using	the	following	code,	the	grand	total	(shown	in	Figure	5-11)	will	count	all	the
customers,	not	only	the	ones	who	bought	something:
Click	here	to	view	code	image

NumOfBuyingCustomersCorrectCrossFilter	:=

CALCULATE	(

				DISTINCTCOUNT	(Customer[Customer	Code]),

				CROSSFILTER	(Sales[CustomerKey],	Customer[CustomerKey],	BOTH)

)

FIGURE	5-11	The	grand	total	shows	an	incorrect	number	if	you	only	set
bidirectional	filtering	on.

The	reason	the	grand	total	is	different	for	the
NumOfBuyingCustomersCorrectCrossFilter	measure	is	that	the	Sales	table	is	not
filtered	at	the	grand	total.	Consequently,	the	engine	has	no	filter	to	propagate	to
Customer.	If,	instead,	you	use	the	full	bidirectional	pattern	with	the	Sales	table	as
a	filter,	then	the	filter	is	always	applied	and	shows	only	the	customers	who	appear
somewhere	in	Sales.	Because	of	this,	the	CROSSFILTER	version	performs	better
when	no	filter	needs	to	be	applied	and,	from	a	performance	point	of	view,	is	the
preferred	one.	The	difference	between	the	two	calculations	becomes	evident	only
if	there	are	multiple	versions	of	the	customer	in	the	current	selection.
By	their	very	nature,	SCDs	change	slowly.	Therefore,	multiple	versions	of	the

same	customer	are	not	generally	hit	by	a	given	selection.	Still,	this	might	happen	if
the	selection	is	large	enough.	For	example,	many	years	of	data	are	likely	to
contain	several	versions	of	the	same	customer.
It	is	very	useful	to	learn	how	to	spot	these	subtle	differences	between

computing	the	number	of	customers	and	the	number	of	versions.	Understanding
these	small	details	will	aid	greatly	in	your	data-modeling	career	and	help	you
identify	when	a	number	or	total	is	incorrect.

Loading	slowly	changing	dimensions
This	chapter	outlines	the	use	of	the	Power	BI	Desktop	Query	Editor	to	load	an
SCD.	SCDs	might	not	always	be	present	in	your	original	data	model,	but	there

may	be	times	when	you	need	to	introduce	them	in	a	specific	model	that	you	are
working	on.	For	example,	in	the	demo	database	we	are	using	in	this	chapter,	the
original	model	does	not	contain	an	SCD.	However,	you	will	need	to	load	an	SCD
to	track	the	original	and	historical	sales	manager,	a	piece	of	information	that	is	not
present	in	the	original	data	warehouse.
To	convey	the	challenges	in	handling	SCDs,	we	must	revive	an	important	topic

that	we	introduced	in	Chapter	1,	“Introduction	to	data	modeling”:	granularity.	The
presence	of	an	SCD	changes	the	granularity	of	both	the	dimension	and	the	fact
table.
Without	SCDs,	the	granularity	of	the	facts	in	the	demo	database	is	only	at	the

customer	level.	When	you	introduce	an	SCD,	the	granularity	increases	to	each
customer	version.	Different	versions	of	the	same	customer	must	be	linked	with
different	sales,	depending	on	when	the	sale	occurred.
Changing	the	granularity	involves	several	actions	and	details	to	build	the

correct	model.	You	will	also	need	to	change	the	query	of	both	the	dimension	and
the	fact	table	so	their	granularity	matches.	You	cannot	update	the	granularity	of	one
table	without	updating	the	granularity	of	the	other	one,	too.	Otherwise,	the
relationship	will	not	work	correctly.
Let	us	start	by	analyzing	the	scenario.	The	database	has	a	Customer	table	that	is

not	an	SCD.	It	also	has	a	CountryManagers	table	that	contains	the	sales	manager
from	each	country	or	region	with	his	or	her	start	and	end	year.	The	sales	manager
for	a	country	or	region	is	not	always	the	same	for	each	year.	However,	because	the
sales	manager	for	a	country	or	region	does	not	always	change	annually,	we	do	not
want	to	overly	increase	granularity	to	the	level	of	customer/year	because	this
would	create	unnecessary	duplicates	of	some	customers.	In	this	scenario,	our
ideal	granularity	falls	somewhere	between	customer	(which	is	too	low	to	account
for	changing	managers)	and	customer/year	(which	is	too	high	to	account	for	the
years	in	which	the	manager	remained	the	same).	This	granularity	depends	on	how
many	times	the	manager	of	the	customer’s	country	or	region	changed.
Let	us	start	by	finding	the	correct	granularity.	To	perform	this	step,	you	will	first

build	the	worst-case	granularity.	Then	you	will	determine	what	the	correct
granularity	is.	Figure	5-12	shows	the	original	table,	which	contains	the	sales
managers	for	various	countries	or	regions.

FIGURE	5-12	The	CountryManagers	table	contains	the	columns	FromYear	and
ToYear	to	indicate	when	the	sales	manager	for	each	country	or	region	was	on	duty.

To	find	the	right	granularity,	you	will	change	this	model	to	a	simpler	one	that
contains	the	country	or	region,	the	sales	manager,	and	the	year	by	replacing	the
FromYear	and	ToYear	columns	with	a	single	column	that	indicates	the	year	only.
By	doing	so,	you	will	increase	the	number	of	rows.	Many	of	the	rows	will	show
the	same	sales	manager	for	several	years.	(We	will	cover	removing	those	extra
rows	in	a	moment.)
First,	add	a	new	column	in	the	table	that	contains	the	list	of	years	that	are

included	between	FromYear	and	ToYear,	using	the	List.Numbers	function,	as
shown	in	Figure	5-13.

FIGURE	5-13	The	Year	column	lists	the	years	between	FromYear	and	ToYear.

Figure	5-13	shows	both	the	column,	visible	only	as	List	in	the	user	interface,
and	the	column’s	content,	which	you	can	see	in	the	Query	Editor	by	clicking	the
cell.	You	can	see	that	Paul	was	the	manager	in	the	United	Kingdom	from	2007	to
2010;	thus,	the	list	contains	the	three	years	2007,	2008,	and	2009.
Now	that	you	have	produced	the	list	of	years,	you	can	expand	the	list	by

generating	one	row	for	each	element	of	the	list.	You	can	also	remove	the
FromYear	and	ToYear	columns,	which	are	now	useless.	This	obtains	the	result
shown	in	Figure	5-14.

FIGURE	5-14	In	this	table,	United	Kingdom	now	appears	three	times	with	the
same	manager.

This	table	now	contains	the	worst-case	granularity	for	the	country	or	region,
with	one	version	for	each	year.	Many	rows	will	show	the	same	value	for	the	same
country,	differing	only	in	the	year.	However,	this	table	is	still	useful,	because	you
will	use	it	as	a	lookup	when	changing	the	granularity	of	the	fact	table.	Because	the
table	contains	the	historical	country	or	region	sales	manager,	save	it	under	the
name	Historical	Country	Managers.
The	second	table	you	need	is	one	that	contains	the	actual	country	or	region	sales

manager.	This	is	somewhat	easy	to	build,	if	we	start	from	the	Historical	Country
Managers	table.	You	simply	need	to	group	the	historical	country	or	region	sales
managers	by	CountryRegion	and	Manager,	which	results	in	the	distinct	pairs	of
CountryRegion	and	Manager.	During	the	grouping,	you	use	MAX	to	aggregate	the
year	to	obtain	the	last	year	the	sales	manager	was	on	duty	for	the	given	country	or
region.	As	shown	in	Figure	5-15,	United	Kingdom	is	now	represented	with	a
single	row.

FIGURE	5-15	After	the	grouping,	the	cardinality	is	now	correct.

This	table	contains	the	distinct	pairs	of	CountryRegion	and	Manager,	along	with
the	last	year	when	the	sales	manager	was	on	duty	for	that	country	or	region.	To
transform	this	table	into	a	table	that	contains	only	the	current	sales	manager,	it	is
enough	to	filter	out	rows	that	do	not	contain	the	value	for	the	current	year	in	the
LastYear	column.	(In	this	example,	the	“current	year”	is	2009,	which	is	the	last
year	for	which	we	have	data	in	the	set.)	Figure	5-16	shows	you	the	result	of	this
second	query,	which	we	named	Actual	Country	Managers.

FIGURE	5-16	Actual	Country	Managers	table	contains	only	the	last	and	current
sales	manager	for	each	country	or	region.

At	this	point,	you	have	the	following	two	tables:
	Actual	Country	Managers	This	contains	the	current	sales	manager	for	each

country	or	region.
	Historical	Country	Managers	This	contains	the	historical	sales	manager
for	each	country	or	region.

The	next	step	will	be	to	use	these	two	tables	to	update	both	the	Customer	table
and	the	Sales	table.

Fixing	granularity	in	the	dimension
You	are	going	to	use	these	two	tables	to	set	the	right	granularity	on	the	Customer
and	Sales	tables.	Let	us	focus	on	the	Customer	table	first.	To	increase	the
granularity,	you	will	need	to	merge	the	original	Customer	table	with	the	Historical
Country	Managers	table.	The	Customer	table	contains	the	CountryRegion	column.
If	you	join	the	Customer	table	with	the	Historical	Country	Managers	table	based
on	the	CountryRegion,	the	result	will	contain	more	rows,	one	for	each	different
manager	for	a	given	customer.	It	will	not	contain	a	new	version	of	the	customer	for
each	year,	which	would	be	the	worst-case	granularity.	Instead,	because	of	the
grouping	operation	that	is	performed	on	the	Historical	Country	Managers	table,	it
will	contain	the	right	number	of	versions	for	each	customer.
After	you	have	done	these	two	operations,	the	data	set	looks	like	Figure	5-17,

with	the	OriginalCustomerKey	column	sorted	in	ascending	order.

FIGURE	5-17	The	new	Customer	table	shows	the	adjusted	granularity	and	the
actual	and	historical	managers	denormalized.

Focus	your	attention	on	the	first	three	lines.	They	represent	Jon	Yang,	a
customer	in	Australia	who	has	had	three	different	sales	managers	over	time:	Paul,
Mark,	and	Louise.	This	is	correctly	represented	in	the	model,	but	there	is	a
problem.	The	column	that	contains	the	customer	key	(called
OriginalCustomerKey)	is	no	longer	a	good	key	for	the	table.	In	fact,	that	code
represents	the	customer,	whereas	now	we	are	moving	toward	a	representation	of

the	versions	of	the	customer.	Because	the	customer	key	is	no	longer	unique,	it
cannot	be	used	as	our	key.	Thus,	we	need	a	new	one.
Generally,	you	can	build	a	new	key	by	simply	adding	a	new	column	with	an

index,	which	is	a	number	starting	from	1	and	growing	by	1	for	each	row.	This	is
the	preferred	technique	used	by	database	managers.	In	our	case,	the	granularity	of
the	new	table	is	at	the	customer/year	level,	where	the	year	you	use	is	the	last	year
when	the	manager	was	on	duty	for	the	country.	Therefore,	you	can	safely	build	a
new	column	by	simply	concatenating	OriginalCustomerKey	with	Year,	which	is
the	year	of	the	Historical	Country	Managers	table	denormalized	in	the	new
Customer	table.	Figure	5-18	shows	the	resulting	table	with	the	new	key.

FIGURE	5-18	OriginalCustomerKey	is	not	a	key.	It’s	better	to	use	the	new
CustomerKey,	which	contains	the	year.

Having	reached	this	point,	you	have	moved	the	granularity	in	the	Customer	table
from	the	original	one	(that	is,	the	customer)	to	the	worst-case	(that	is,	the	customer
and	year).	This	table	is	not	the	final	one,	but	it	is	a	useful	intermediate	step.	We
saved	it	under	the	name	CustomerBase.
The	final	step	is	to	fix	the	granularity	and	move	to	the	right	one.	This	step	is

similar	to	what	you	did	with	the	sales	managers	for	the	various	countries	or
regions.	Starting	from	CustomerBase,	you	remove	all	the	columns	except	the
granularity	columns,	and	perform	a	grouping	by	OriginalCustomerKey,	Actual
Manager,	and	Historical	Manager.	You	then	take	the	MAX	of	CustomerKey	and
name	it	NewCustomerKey.	The	result	is	shown	in	Figure	5-19.

FIGURE	5-19	This	temporary	table	is	now	at	the	right	level	of	granularity.

This	grouping	operation	was	useful	to	build	the	correct	granularity,	but	in
performing	it,	you	had	to	remove	all	the	columns	from	the	original	Customer	table.
The	next	step	is	to	restore	the	needed	columns.	First,	you	remove	all	the	columns
from	the	table,	maintaining	only	the	NewCustomerKey	column,	as	shown	in	Figure
5-20.

FIGURE	5-20	This	table	contains	only	the	customer	keys,	but	now	it	is	at	the
correct	granularity.

The	final	step	is	to	merge	this	table	with	CustomerBase,	based	on	the	customer
key,	and	to	retrieve	all	the	needed	columns.	The	result	is	shown	in	Figure	5-21,
where	you	can	easily	spot	the	fact	that	customers	vary	in	the	number	of	versions,
depending	on	how	many	managers	they	had	over	time.

FIGURE	5-21	The	final	Customer	table	has	the	correct	granularity	and	all	the
relevant	columns.

Next,	you	will	perform	a	similar	operation	with	the	Sales	table.	(Note	that
because	you	have	changed	the	key	of	the	Customer	table,	the	CustomerKey	column
in	Sales	is	no	longer	a	good	key	to	use.)

Fixing	granularity	in	the	fact	table
In	Sales,	you	cannot	compute	the	new	key	based	on	the	year	of	the	sale.	In	fact,	if
the	sales	manager	of	a	country	or	region	did	not	change,	then	the	new	key	does	not
depend	on	the	year	of	the	sale.	Instead,	you	can	search	for	the	new	key.	The	new
cardinality	of	the	dimension	depends	on	the	customer,	the	actual	manager,	and	the
historical	manager.	Given	these	three	values,	you	can	search	in	the	new	Customer
dimension.	There,	you	will	find	the	new	CustomerKey.
You	need	to	perform	the	following	steps	on	the	Sales	table	to	fix	its	granularity:
1.	In	the	original	Sales	table,	add	a	column	that	contains	the	year	of	the	sales.
2.	Perform	a	join	with	the	CustomerBase	table	to	obtain	the	customer	country
as	well	as	the	actual	and	historical	managers.	(You	use	CustomerBase
because	you	can	search	for	the	sales	year	there.	In	the	CustomerBase	table,
you	still	have	one	different	customer	per	year.	The	table	had	the	wrong
granularity,	but	it	now	proves	useful	because	you	can	easily	search	it	using
the	year	of	the	sale.)

The	result	of	the	merge	operation	is	in	the	new	column,	as	shown	in	Figure	5-
22.

FIGURE	5-22	You	need	to	merge	Sales	with	CustomerBase	to	retrieve	the	actual
and	historical	managers.

Having	reached	this	point,	you	can	expand	the	actual	and	historical	managers.
You	can	then	use	them	to	perform	a	second	join	with	the	Customer	table,	which
has	the	right	granularity.	Then	search	for	the	customer	that	has	the	same	customer
code,	actual	manager,	and	historical	manager.	This	final	lookup	will	let	you
retrieve	the	new	customer	key	and	will	solve	the	granularity	on	the	fact	table.
Figure	5-23	shows	an	extract	of	the	Sales	table	after	the	processing.	The	first

highlighted	row	is	about	a	customer	whose	manager	was	first	Mark	and	then
changed	to	Louise.	Thus,	that	customer	will	have	different	versions,	and	the
individual	row	(related	to	2007,	when	the	manager	was	still	Mark)	points	to	the
2007	version	of	the	customer.	In	the	second	row,	the	sales	manager	never	changed,
so	there	is	only	one	row	for	the	customer	(marked	2009,	the	last	year).	In	addition,
the	sale—even	if	it	happened	in	2007—points	to	the	2009	version	of	the	customer.
In	the	final	version	of	the	Sales	table,	the	lookup	column	will	no	longer	be
present;	it	is	only	part	of	the	processing.

FIGURE	5-23	The	two	highlighted	rows	show	the	different	handling	of	customers
who	changed	sales	managers	versus	customers	who	did	not.

Loading	SCDs	requires	a	lot	of	care.	The	following	is	a	brief	recap	of	the	steps
you’ve	performed	so	far:

1.	You	defined	the	new	granularity	of	the	SCD.	The	new	granularity	depended
on	the	attributes	of	the	dimension	that	were	expected	to	change	over	time.

2.	You	modified	the	dimension	so	it	used	the	right	granularity.	This	required
complex	queries	and,	most	importantly,	the	definition	of	a	new	customer
code	to	use	as	the	foundation	of	the	relationship.

3.	You	modified	the	fact	table	so	that	it	used	the	new	code.	Because	the	new
code	could	not	be	easily	computed,	you	had	to	search	for	its	value	in	the
new	dimension	by	performing	a	lookup.	All	the	slowly	changing	attributes
were	used	to	define	the	granularity.

We	went	through	the	whole	process	of	describing	how	to	handle	SCDs	with	the
Query	Editor	of	Power	BI	Desktop.	(You	can	perform	the	same	steps	in	Excel
2016.)	We	wanted	to	show	the	level	of	complexity	involved	in	handling	SCDs.
The	next	section	describes	rapidly	changing	dimensions.	As	you	will	discover,	the
management	of	rapidly	changing	dimensions	is	far	simpler	than	that	of	SCDs.
However,	rapidly	changing	dimensions	are	not	the	optimal	solution	from	a	storage
and	performance	point	of	view.	Also,	you	can	safely	use	the	easier	pattern	of
rapidly	changing	dimensions	for	slowly	changing	ones	if	your	data	model	is	small
enough	(that	is,	in	the	range	of	a	few	million	rows).

Rapidly	changing	dimensions
As	their	name	implies,	slowly	changing	dimensions	typically	change	slowly	and
do	not	produce	too	many	versions	of	the	entity	they	represent.	We	deliberately
used	customers	under	different	sales	managers	as	an	example	of	an	SCD	that	might
potentially	change	every	year.	Because	the	changing	attribute	is	owned	by	all
customers,	the	number	of	new	versions	created	is	somewhat	high.	A	more
traditional	example	of	an	SCD	might	be	tracking	the	current	and	historical	address
of	a	customer,	as	customers	are	not	generally	expected	to	update	their	address
every	year.	We	chose	to	use	the	sales	manager	example	rather	than	the	address	one
because	the	resulting	model	can	be	easily	created	with	Excel	or	Power	BI
Desktop.
Another	attribute	that	you	might	be	interested	in	tracking—one	that	always

changes	each	year—is	the	customer’s	age.	For	example,	suppose	you	want	to
analyze	sales	by	age	range.	If	you	do	not	handle	the	customer’s	age	as	an	SCD,
you	cannot	store	it	in	the	customer	dimension.	The	customer’s	age	changes,	and
you	need	to	track	the	age	when	the	sale	was	made	rather	than	the	current	age.	You
could	use	the	pattern	described	in	the	previous	section	to	handle	age.	However,
this	section	shows	a	different	way	of	handling	changes	in	a	dimension:

implementing	the	pattern	for	rapidly	changing	dimensions.
Suppose	you	have	10	years	of	data	in	your	model.	Chances	are,	if	you	have

used	SCDs,	you	have	10	different	versions	of	the	same	customer	in	your	table.	If
even	more	attributes	must	be	monitored	for	changes,	this	number	might	easily
increase	up	to	a	point	where	handling	it	becomes	cumbersome.	To	address	this,
focus	your	attention	on	the	fact	that	the	whole	dimension	does	not	change.	Rather,
what	changes	is	one	attribute	of	the	dimension.	If	an	attribute	changes	too
frequently,	the	best	option	is	to	store	the	attribute	as	a	dimension	by	itself,	which
removes	it	from	the	customer	dimension.
The	starting	model	is	shown	in	Figure	5-24,	where	the	current	age	of	the

customer	is	saved	in	the	Customer	table.

FIGURE	5-24	The	age	of	the	customer	is	stored	as	an	attribute	of	the	Customer
table.

The	ages	stored	in	the	Customer	table	are	the	current	ages	of	each	customer.
They	are	updated	every	day,	based	on	the	current	date.	But	what	about	the

customer’s	historical	age—that	is,	his	or	her	age	when	the	sale	was	made?
Because	the	customer’s	age	is	changing	quickly,	a	good	way	to	model	it	is	to	store
the	historical	age	in	the	fact	table	by	using	a	calculated	column.	Try	the	following
code:
Click	here	to	view	code	image

Sales[Historical	Age]	=

DATEDIFF	(

				RELATED	(Customer[Birth	Date]),

				RELATED	('Date'[Date]),

				YEAR

)

At	the	time	of	the	sale,	this	column	computes	the	difference	between	the
customer’s	birth	date	and	the	date	of	the	sale.	The	resulting	value	stores	the
historical	age	in	a	very	simple	and	convenient	way.	If	you	store	the	data	in	the	fact
table	and	denormalize	it	there,	you	are	not	creating	a	dimension.	This	approach
models	the	age	without	the	whole	process	of	data	transformation	that	is	required
to	handle	an	SCD.
This	column,	alone,	is	already	useful	to	build	charts.	For	example,	Figure	5-25

shows	a	histogram	with	the	sales	divided	by	age.

FIGURE	5-25	The	historical	age	works	perfectly	fine	to	show	histograms	and
charts.

The	age,	as	a	number,	works	fine	for	charts.	But	you	might	also	be	interested	in
grouping	the	age	into	different	ranges	to	obtain	different	insights.	In	such	a	case,
the	best	option	is	to	create	a	real	dimension	and	use	the	age	in	the	fact	table	as	a
foreign	key	to	point	to	the	dimension.	This	will	result	in	a	data	model	like	the	one
shown	in	Figure	5-26.

FIGURE	5-26	You	can	turn	the	historical	age	into	a	foreign	key	and	build	a
proper	age	dimension.

In	the	Historical	Age	dimension,	you	can	store	age	ranges	or	other	interesting
attributes.	This	enables	you	to	build	reports	that	slice	by	age	range	instead	of	an
individual	age.	For	example,	the	report	shown	in	Figure	5-27	shows	sales	amount,
the	number	of	customers	in	that	age	range,	and	the	average	spent	in	that	age	range.

FIGURE	5-27	With	a	proper	dimension,	you	can	easily	slice	by	age	range.

You	can	obtain	a	good	data	model	by	separating	the	rapidly	changing	attribute
from	the	original	dimension	and	storing	it	as	a	value	in	the	fact	table	or,	if	needed,
building	a	proper	dimension	on	top	of	the	attribute.	The	resulting	loading	process
is	much	easier—and	the	data	model	is	much	simpler—than	with	a	fully	featured
SCD.

Choosing	the	right	modeling	technique
In	this	chapter,	we	have	shown	two	different	methods	for	handling	changing
dimensions.	The	canonical	way	is	to	create	a	fully	featured	SCD	with	a	rather
complex	loading	process.	The	simpler	way	is	to	store	the	slowly	changing
attribute	as	a	column	in	the	fact	table,	and,	if	needed,	to	build	a	proper	dimension
on	top	of	the	attribute.
The	latter	solution	is	much	simpler	to	develop,	so	sometimes	it	will	be	the	best

way	to	handle	SCDs,	especially	if	you	can	easily	isolate	one	slowly	changing
attribute.	However,	if	the	number	of	attributes	is	larger,	you	might	end	up	having
too	many	dimensions,	making	the	data	model	difficult	to	browse.	As	often	happens
in	data	modeling,	you	should	always	think	carefully	before	choosing	one	solution
over	the	other.	For	example,	if	you	want	to	track,	for	the	customer,	several
historical	attributes	like	age,	full	address	(country/region,	state,	and	continent),
country	or	region	sales	manager,	and	possibly	other	attributes,	you	can	end	up
building	many	dimensions	for	the	sole	purpose	of	tracking	all	those	attributes.	On
the	other	hand,	no	matter	how	many	changing	attributes	you	have	in	a	dimension,	if
you	go	for	the	fully	featured	SCD,	then	you	will	have	to	maintain	only	a	single
dimension.
Let	us	go	back	to	the	example	used	throughout	this	chapter:	the	handling	of	the

current	and	historical	sales	manager.	If,	instead	of	focusing	on	the	dimension,	you
focus	on	the	attribute	alone,	you	can	easily	solve	the	scenario	by	using	the	model

shown	in	Figure	5-28.

FIGURE	5-28	Denormalizing	the	historical	manager	in	the	fact	table	leads	to	a
simple	model.

Building	the	model	is	straightforward.	You	only	need	to	compute,	for	each	sale,
the	sales	manager	assigned	to	the	customer’s	country	or	region	at	the	time	of	the
sale.	You	can	obtain	this	with	a	couple	of	merge	operations—and,	most
importantly,	without	having	to	update	the	granularity	of	either	the	fact	table	or	the
dimension.
Regarding	SCDs,	here	is	a	simple	rule	of	thumb:	If	possible,	try	to	isolate	the

slowly	changing	attribute	(or	set	of	attributes)	and	build	a	separate	dimension	for
those	attributes.	You	do	not	need	to	update	the	granularity.	If	the	number	of
attributes	is	too	large,	then	the	best	option	is	to	go	for	the	much	more	complex
process	of	building	a	full	SCD.

Conclusions
SCDs	are	not	easy	to	manage.	Yet,	in	many	cases,	it	is	important	to	use	them
because	you	want	to	track	what	happened	in	a	relationship	and	attempt	to	predict
what	might	happen	in	the	future.	The	following	are	the	important	points	to

remember	from	this	chapter:
	What	changes	is	not	the	dimension.	It	is	a	set	of	attributes	of	a	dimension.
Thus,	the	proper	way	of	expressing	the	changing	nature	of	your	data	is	to
understand	what	the	slowly	changing	attributes	are.
	You	use	historical	attributes	when	analyzing	the	past.	You	use	current
attributes	when	projecting	the	current	data	to	forecast	the	future.
	If	you	have	a	small	set	of	slowly	changing	attributes,	you	can	safely
denormalize	them	in	the	fact	table.	If	a	dimension	is	needed	for	those
attributes,	you	can	build	a	historical	dimension	as	a	separate	one.
	If	the	number	of	attributes	is	too	large,	you	must	follow	the	SCD	pattern,
knowing	that	the	loading	process	will	be	much	more	complex	and	error-
prone.
	If	you	build	an	SCD,	you	must	move	the	granularity	of	both	the	fact	table	and
the	dimension	to	the	version	of	the	entity	instead	of	the	original	entity.
	When	you	manage	SCDs,	most	of	the	counting	calculations	must	be	adjusted
to	handle	the	new	granularity,	typically	by	using	a	distinct	count	instead	of
simple	counts.

Chapter	6.	Using	snapshots

A	snapshot	is	a	kind	of	table	that	is	often	used	in	the	modeling	of	data.	In	the	first
chapters	of	this	book,	you	became	familiar	with	the	idea	of	dividing	a	model	by
fact	tables	and	dimensions,	and	you	learned	that	a	fact	is	a	type	of	event—that	is,
something	that	happens.	Then,	you	aggregated	values	from	the	fact	table	by	using
an	aggregation	function,	like	SUM,	COUNT	or	DISTINCTCOUNT.	But	the	truth	is,
sometimes	a	fact	is	not	an	event.	Sometimes,	a	fact	stores	something	that	has	been
measured,	like	the	temperature	of	an	engine,	the	daily	average	number	of
customers	who	entered	a	store	each	month,	or	the	quantity	on-hand	of	a	product.	In
all	these	cases,	you	store	a	measurement	at	a	point	in	time	instead	of	the	measure
of	an	event.	All	these	scenarios	are	typically	modeled	as	snapshots.	Another	kind
of	snapshot	is	the	balance	of	a	current	account.	The	fact	is	an	individual
transaction	in	the	account,	and	a	snapshot	states	what	the	balance	was,	at	a	given
point	in	time.
A	snapshot	is	not	a	fact.	It	is	a	measure	taken	at	some	point	in	time.	In	fact,

when	it	comes	to	snapshots,	time	is	a	very	important	part	of	the	equation.
Snapshots	might	appear	in	your	model	because	the	more	granular	information	is
too	large	or	it	is	unavailable.
In	this	chapter,	we	analyze	some	kinds	of	snapshots	to	give	you	a	good	level	of

understanding	on	how	to	handle	them.	As	always,	keep	in	mind	that	your	model	is
likely	to	be	slightly	different	from	anything	we	will	ever	be	able	to	describe	as	a
standard	pattern.	Be	prepared	to	adjust	the	content	of	this	book	to	your	specific
needs,	and	use	some	creativity	in	developing	your	model.

Using	data	that	you	cannot	aggregate	over	time
Suppose	you	periodically	perform	an	inventory	in	your	stores.	The	table	that
contains	the	inventory	is	a	fact	table.	However,	this	time,	the	fact	is	not	something
that	happened;	it	is	something	that	holds	true	at	a	given	point	in	time.	What	you	are
saying	in	the	fact	table	is,	“at	this	date,	the	quantity	of	this	product	available	in	this
store	is	x.”	The	next	month,	when	you	perform	the	same	operation,	you	can	state
another	fact.	This	is	a	snapshot—that	is,	a	measure	of	what	was	available	at	that
time.	From	an	operational	point	of	view,	the	table	is	a	fact	table	because	you	are
likely	to	compute	values	on	top	of	the	table,	and	because	the	table	is	linked	to
dimensions.	The	difference	here	has	more	to	do	with	the	nature	of	the	fact	than
with	the	structure.

Another	example	of	a	snapshot	is	the	exchange	rate	of	a	currency.	If	you	need	to
store	the	exchange	rate	of	a	currency,	you	can	store	it	in	a	table	that	contains	the
date,	the	currency,	and	its	value	compared	to	some	other	reference	currency,	like
USD.	It	is	a	fact	table	because	it	is	related	to	dimensions,	and	it	contains	numbers
that	you	will	use	for	an	aggregation.	However,	it	does	not	store	an	event	that
happened.	Rather,	it	stores	a	value	that	has	been	measured	at	a	given	point	in	time.
We	will	provide	a	complete	lesson	of	how	to	manage	exchange	rates	later	in
Chapter	11,	“Working	with	multiple	currencies.”	For	the	purposes	of	this	chapter,
it	is	enough	to	note	that	a	currency	exchange	rate	is	a	kind	of	snapshot.
It	is	useful	to	differentiate	between	the	following	kinds	of	snapshots:
	Natural	snapshots	These	are	data	sets	in	which	the	data	is,	by	its	nature,	in
the	form	of	a	snapshot.	For	example,	a	fact	table	that	measures	the
temperature	of	the	water	in	an	engine	on	a	daily	basis	is	a	natural	snapshot.
In	other	words,	the	fact	is	the	measure,	and	the	event	is	the	measurement.
	Derived	snapshots	These	are	data	sets	that	look	like	snapshots,	but	are
treated	as	such	only	because	we	tend	to	think	of	them	as	snapshots.	Think,
for	example,	of	a	fact	table	that	contains	the	balance	of	the	current	accounts
on	a	monthly	basis.	Every	month,	the	measure	is	the	balance,	but	in	reality,
the	balance	of	the	account	is	derived	from	the	sum	of	all	the	transactions
(either	positive	or	negative)	that	previously	occurred.	Thus,	the	data	is	in
the	form	of	a	snapshot,	but	it	can	also	be	computed	by	a	simpler	aggregation
of	the	raw	transactions.

The	difference	is	important.	In	fact,	as	you	will	learn	in	this	chapter,	handling
snapshots	comes	with	both	advantages	and	disadvantages.	You	must	find	the
correct	balance	between	them	to	choose	the	best	possible	representation	for	your
data.	Sometimes,	it	is	better	to	store	balances;	other	times,	it	is	better	to	store
transactions.	In	the	case	of	derived	snapshots,	you	have	the	freedom	(and	the
responsibility)	to	make	the	right	choice.	With	natural	snapshots,	however,	the
choice	is	limited,	because	the	data	comes	in	naturally	as	a	snapshot.

Aggregating	snapshots
Let	us	start	the	analysis	of	snapshots	by	learning	the	details	on	how	to	correctly
aggregate	data	from	snapshots.	As	an	example,	let	us	consider	an	Inventory	fact
that	contains	weekly	snapshots	of	the	on-hand	quantity	for	each	product	and	store.
The	full	model	is	shown	in	Figure	6-1.

FIGURE	6-1	The	Inventory	table	contains	snapshots	of	on-hand	quantity,	created
on	a	weekly	basis.

Initially,	this	looks	like	a	simple	star	schema	with	two	fact	tables	(Sales	and
Inventory)	and	no	issues	at	all.	Indeed,	both	fact	tables	have	the	same	day,
product,	and	store	granularity	dimensions.	The	big	difference	between	the	two
tables	is	that	Inventory	is	a	snapshot,	whereas	Sales	is	a	regular	fact	table.

	Note

As	you	will	learn	in	this	section,	computing	values	on	top	of	snapshot
tables	hides	some	complexity.	In	fact,	in	the	process	of	building	the
correct	formula,	we	will	make	many	mistakes,	which	we	will	analyze
together.

For	now,	let	us	focus	on	the	Inventory	table.	As	we	mentioned,	Inventory
contains	weekly	snapshots	of	the	on-hand	quantity	for	every	product	and	store.

You	can	easily	create	a	measure	that	aggregates	the	On	Hand	column	by	using	the
following	code:
Click	here	to	view	code	image

On	Hand	:=	SUM	(Inventory[OnHandQuantity])

Using	this	measure,	you	can	build	a	matrix	report	in	Power	BI	Desktop	to
analyze	the	values	for	an	individual	product.	Figure	6-2	shows	a	report	with	the
details	of	one	type	of	stereo	headphones	in	different	stores	in	Germany.

FIGURE	6-2	This	report	shows	the	on-hand	quantity	for	one	product	in	different
stores	in	Germany.

Looking	at	the	totals	in	the	report,	you	can	easily	spot	the	problem.	The	total	for
each	store	at	the	year	level	is	wrong.	In	fact,	if	in	the	Giebelstadt	store	there	were
18	headphones	available	in	November	and	none	in	December,	then	the	total	value
for	2007	is	obviously	not	56.	The	correct	value	should	be	zero,	as	there	were
none	on-hand	after	November	2007.	Because	the	snapshot	is	a	weekly	one,	if	you
expand	the	month	to	the	date	level,	you	will	notice	that	even	at	the	month	level,	the
value	reported	is	incorrect.	You	can	see	this	in	Figure	6-3,	where	the	total	at	the
month	level	is	shown	as	the	sum	of	the	individual	date	values.

FIGURE	6-3	The	total	at	the	month	level	is	generated	by	summing	the	individual
dates,	resulting	in	an	incorrect	value.

When	handling	snapshots,	remember	that	snapshots	do	not	generate	additive
measures.	An	additive	measure	is	a	measure	that	can	be	aggregated	by	using	SUM
over	all	the	dimensions.	With	snapshots,	you	must	use	SUM	when	you	aggregate
over	the	stores,	for	example,	but	you	cannot	use	SUM	to	aggregate	over	time.
Snapshots	contain	sets	of	information	that	are	valid	at	a	given	point	in	time.
However,	at	the	grand-total	level,	you	typically	don’t	aggregate	over	dates	by
using	a	sum—for	example,	showing	the	sum	of	all	the	individual	days.	Instead,
you	should	consider	the	last	valid	value,	the	average,	or	some	other	kind	of
aggregation	to	display	a	meaningful	result.
This	is	a	typical	scenario	in	which	you	must	use	the	semi-additive	pattern,

where	you	show	the	values	from	the	last	period	for	which	there	is	some
information.	If	you	focus	on	April,	for	example,	the	last	date	for	which	there	is
data	is	the	28th.	There	are	multiple	ways	to	handle	this	calculation	by	using	DAX.
Let	us	explore	them.
The	canonical	semi-additive	pattern	uses	the	LASTDATE	function	to	retrieve

the	last	date	in	a	period.	Such	a	function	is	not	useful	in	this	example	because,
when	you	select	April,	LASTDATE	will	return	the	30th	of	April,	for	which	there
is	no	data.	In	fact,	if	you	modify	the	On	Hand	measure	with	the	following	code,	the
result	will	clear	out	the	monthly	totals:
Click	here	to	view	code	image

On	Hand	:=

CALCULATE	(

				SUM	(Inventory[OnHandQuantity]),

				LASTDATE	('Date'[Date])

)

You	can	see	this	in	Figure	6-4,	where	the	totals	at	the	month	level	are	blank.

FIGURE	6-4	If	you	use	LASTDATE	to	retrieve	the	last	date	in	a	period,	the	totals
disappear.

The	date	you	need	to	use	is	the	last	date	for	which	there	is	data,	which	might	not
correspond	to	the	last	date	of	the	month.	In	this	case,	DateKey	in	the	Inventory
table	is	a	date,	so	you	might	try	a	different	formulation.	Instead	of	using
LASTDATE	on	the	Date	table,	which	contains	all	the	dates,	you	might	be	tempted
to	use	LASTDATE	on	the	Inventory	date	column	in	the	Inventory	table,	which
contains	only	the	available	dates.	We	have	seen	these	kinds	of	formulas	multiple
times	in	naïve	models.	Unfortunately,	however,	they	result	in	incorrect	totals.	This
is	because	it	violates	one	of	the	best	practices	of	DAX,	that	is	to	apply	filters	on
dimensions	instead	of	applying	them	on	the	fact	table,	for	columns	belonging	to	a
relationship.	Let	us	analyze	the	behavior	by	looking	at	the	result	in	Figure	6-5,
where	the	measure	has	been	modified	with	the	following	code:
Click	here	to	view	code	image

On	Hand	:=

CALCULATE	(

				SUM	(Inventory[OnHandQuantity]),

				LASTDATE	(Inventory[DateKey])

)

FIGURE	6-5	Using	LASTDATE	on	the	Inventory	date	column	still	results	in
wrong	numbers.

Look	at	the	totals	for	April.	Notice	that	in	Giebelstadt	and	Munich,	the	value
shown	is	from	the	21st	of	April,	whereas	for	Obamberg,	the	value	is	from	the
28th.	However,	the	grand	total	for	all	three	stores	is	only	6,	which	matches	the
total	of	the	values	for	all	three	stores	on	the	28th.	What	is	happening?	Instead	of
counting	the	values	from	the	last	date	for	Munich	and	Giebelstadt	(the	21st)	and
the	value	for	the	last	date	for	Obamberg	(the	28th),	the	grand	total	counts	only	the
values	from	the	28th	because	that	is	the	last	date	among	the	three	stores.	In	other
words,	the	value	given—that	is,	6—is	not	the	grand	total,	but	rather	the	partial
total	at	the	store	level.	In	fact,	because	there	are	no	quantities	on	the	28th	for
Giebelstadt	and	Munich,	their	monthly	total	should	show	a	zero,	not	the	last
available	value.	Thus,	a	correct	formulation	of	the	grand	total	should	search	for
the	last	date	for	which	there	are	values	for	at	least	one	shop.	The	standard	solution
for	this	pattern	is	as	follows:
Click	here	to	view	code	image

On	Hand	:=	CALCULATE	(

				SUM	(Inventory[OnHandQuantity]),

				CALCULATETABLE	(

								LASTNONBLANK	('Date'[Date],	NOT	(ISEMPTY	(Inventory))),

								ALL	(Store)

)

)

Or,	in	this	specific	case,	as	follows:
Click	here	to	view	code	image

On	Hand	:=	CALCULATE	(

				SUM	(Inventory[OnHandQuantity]),

				LASTDATE	(

								CALCULATETABLE	(

												VALUES	(Inventory[Date]),

												ALL	(Store)

)

)

)

Both	versions	work	fine.	You	decide	which	one	to	use	depending	on	the	data
distribution	and	some	peculiarities	of	the	model,	which	are	not	worth	investigating
here.	The	point	is	that	using	this	version	of	the	on-hand	calculation,	you	obtain	the
desired	result,	as	shown	in	Figure	6-6.

FIGURE	6-6	The	last	formula	yields	the	correct	results	at	the	total	level.

This	code	runs	just	fine,	but	it	has	one	major	drawback:	It	must	scan	the
Inventory	table	whenever	it	searches	for	the	last	date	for	which	there	is	data.
Depending	on	the	number	of	dates	in	the	table,	and	on	data	distribution,	this	might
take	some	time,	and	could	result	in	poor	performance.	In	such	a	case,	a	good
solution	is	to	anticipate	the	calculation	of	which	dates	are	to	be	considered	valid
dates	for	the	inventory	at	process	time	when	your	data	is	loaded	in	memory.	To	do
this,	you	can	create	a	calculated	column	in	the	Date	table	that	indicates	whether
the	given	date	is	present	in	the	Inventory	table.	Use	the	following	code:
Click	here	to	view	code	image

Date[RowsInInventory]	:=	CALCULATE	(NOT	ISEMPTY	(

Inventory))

The	column	is	a	Boolean	with	only	two	possible	values:	TRUE	or	FALSE.
Moreover,	it	is	stored	in	the	Date	table,	which	is	always	a	tiny	table.	(Even	if	you
had	10	years	of	data,	the	Date	table	would	account	for	only	around	3,650	rows.)
The	consequence	of	this	is	that	scanning	a	tiny	table	is	always	a	fast	operation,
whereas	scanning	the	fact	table—which	potentially	contains	millions	of	rows—
might	not	be.	After	the	column	is	in	place,	you	can	change	the	calculation	of	the
on-hand	value	as	follows:
Click	here	to	view	code	image

On	Hand	:=	CALCULATE	(

				SUM	(Inventory[OnHandQuantity]),

				LASTDATE	(

								CALCULATETABLE	(

												VALUES	('Date'[Date]),

												'Date'[RowsInInventory]	=	TRUE

)

)

)

Even	if	the	code	looks	more	complex,	it	will	be	faster	because	it	needs	to
search	for	the	inventory	dates	in	the	Date	table,	which	is	smaller,	filtering	by	a
Boolean	column.
This	book	is	not	about	DAX.	It	is	about	data	modeling.	So	why	did	we	spend	so

much	time	analyzing	the	DAX	code	to	compute	a	semi-additive	measure?	The
reason	is	that	we	wanted	to	point	your	attention	to	the	following	details,	which	do
in	fact	relate	to	data	modeling:

	A	snapshot	table	is	not	like	a	regular	fact	table	Its	values	cannot	be
summed	over	time.	Instead,	they	must	use	non-additive	formulas	(typically
LASTDATE).
	Snapshot	granularity	is	seldom	that	of	the	individual	date	A	table
snapshotting	the	on-hand	quantity	for	each	product	every	day	would	quickly
turn	into	a	monster.	It	would	be	so	large	that	performance	would	be	very
bad.
	Mixing	changes	in	granularity	with	semi-additivity	can	be	problematic
The	formulas	tend	to	be	hard	to	write.	In	addition,	if	you	do	not	pay	attention
to	the	details,	performance	will	suffer.	And	of	course,	it	is	very	easy	to

author	code	that	does	not	compute	the	totals	in	the	right	way.	It	is	always
good	to	double-check	all	the	numbers	before	considering	them	correct.
	To	optimize	the	code,	precompute	information	whenever	possible	You
should	precompute	the	information	about	which	dates	are	present	in	the
snapshot	by	using	a	calculated	column	in	the	date	table.	This	small	change
results	in	much	better	performance.

What	you	learned	in	this	section	applies	to	nearly	all	kinds	of	snapshots.	You
might	need	to	handle	the	price	of	a	stock,	the	temperature	of	an	engine,	or	any	kind
of	measurement.	They	all	fall	in	the	same	category.	Sometimes,	you	will	need	the
value	at	the	beginning	of	the	period.	Other	times,	it	will	be	the	value	at	the	end.
However,	you	will	seldom	be	able	to	use	a	simple	sum	to	aggregate	values	from
the	snapshot.

Understanding	derived	snapshots
A	derived	snapshot	is	a	pre-aggregated	table	that	contains	a	concise	view	of	the
values.	Most	of	the	time,	snapshots	are	created	for	performance	reasons.	If	you
need	to	aggregate	billions	of	rows	every	time	you	want	to	compute	a	number,	then
it	might	be	better	to	precompute	the	value	in	a	snapshot	to	reduce	the
computational	effort	of	your	model.
Often,	this	is	a	good	idea,	but	you	must	carefully	balance	the	pros	and	cons

before	choosing	a	snapshot	for	your	model.	Imagine,	for	example,	that	you	must
build	a	report	that	shows	the	number	of	customers	for	every	month,	dividing	them
into	new	customers	and	returning	ones.	You	can	leverage	a	precomputed	table,
like	the	one	shown	in	Figure	6-7,	which	contains	the	three	values	you	need	for
every	month.

FIGURE	6-7	This	table	contains	new	and	returning	customers	as	a	snapshot.

This	pre-aggregated	table,	named	NewCustomers,	can	be	added	to	the	model
and	joined	through	relationships	with	the	Date	table.	This	will	enable	you	to	build
reports	on	top	of	it.	Figure	6-8	shows	the	resulting	model.

FIGURE	6-8	NewCustomers	is	a	snapshot	table	linked	in	the	model.

This	snapshot	contains	only	one	row	per	month,	for	a	total	of	36	rows.	When
compared	to	the	millions	of	rows	in	the	fact	table,	it	looks	like	a	great	deal.	In
fact,	you	can	easily	build	a	report	that	shows	the	sales	amount	along	with	the
precomputed	values,	as	shown	in	Figure	6-9.

FIGURE	6-9	A	monthly	report	is	very	easy	to	generate	with	a	snapshot.

From	a	performance	point	of	view,	this	report	is	great	because	all	the	numbers
are	precomputed	and	available	in	a	matter	of	milliseconds.	Nevertheless,	in	a
scenario	like	this,	speed	comes	at	a	cost.	In	fact,	the	report	has	the	following
issues:

	You	cannot	generate	subtotals	As	with	the	snapshot	shown	in	the	previous
section,	you	cannot	generate	subtotals	by	aggregating	with	SUM.	Worse,	in
this	case,	the	numbers	are	all	computed	with	distinct	counts—meaning	you
cannot	aggregate	them	by	using	LASTDATE	or	any	other	technique.
	You	cannot	slice	by	any	other	attribute	Suppose	you	are	interested	in	the
same	report,	but	limited	to	customers	who	bought	some	kind	of	product.	In
that	case,	the	snapshot	is	of	no	help.	The	same	applies	to	the	date	or	any
other	attribute	that	goes	deeper	than	the	month.

In	such	a	scenario,	because	you	can	obtain	the	same	calculation	by	using	a
measure,	the	snapshot	is	not	the	best	option.	If	you	must	handle	tables	that	have
less	than	a	few	hundred	million	rows,	then	making	derived	snapshots	is	not	a	good
option.	Calculations	on	the	fly	typically	provide	good	performance	and	much	more

flexibility.
With	that	said,	there	are	scenarios	in	which	you	don’t	want	flexibility	or	need	to

avoid	it.	In	those	scenarios,	snapshots	play	a	very	important	role	in	the	definition
of	the	data	model,	even	if	they	are	derived	snapshots.	In	the	next	section,	we
analyze	one	of	these	scenarios,	the	transition	matrix.

Understanding	the	transition	matrix
A	transition	matrix	is	a	very	useful	modeling	technique	that	makes	extensive	use
of	snapshots	to	create	powerful	analytical	models.	It	is	not	an	easy	technique,	but
we	think	it	is	important	that	you	understand	at	least	the	basic	concepts	of	the
transition	matrix.	It	can	be	a	useful	tool	for	your	modeling	tool	belt.
Suppose	you	assign	a	ranking	to	your	customers	based	on	how	much	they	bought

in	a	month.	You	have	three	categories	of	customers—low,	medium,	and	high—and
you	have	a	Customer	Rankings	configuration	table	that	you	use	to	store	the
boundaries	of	each	category,	as	shown	in	Figure	6-10.

FIGURE	6-10	The	Customer	Rankings	configuration	table	for	the	rating	of	a
customer.

Based	on	this	configuration	table,	you	can	build	a	calculated	table	in	the	model
that	ranks	each	customer	on	a	monthly	basis,	by	using	the	following	code:
Click	here	to	view	code	image

CustomerRanked	=

SELECTCOLUMNS	(

				ADDCOLUMNS	(

								SUMMARIZE	(Sales,	'Date'[Calendar	Year],	'Date'[Month],	Sales[CustomerKey]),

								"Sales",	[Sales	Amount],

								"Rating",	CALCULATE	(

												VALUES	('Rating	Configuration'[Rating]),

												FILTER	(

																'Ranking	Configuration',

																AND	(

																				'Ranking	Configuration'[MinSale]	<	[Sales	Amount],

																				'Ranking	Configuration'[MaxSale]	>=	[Sales	Amount]

)

)

),

								"DateKey",	CALCULATE	(MAX	('Date'[DateKey]))

),

				"CustomerKey",	[CustomerKey],

				"DateKey",	[DateKey],

				"Sales",	[Sales],

				"Rating",	[Rating]

)

This	query	looks	rather	complex,	but	in	reality,	its	result	is	simple.	It	produces
a	list	of	month,	year,	and	customer	keys.	Then,	based	on	the	configuration	table,	it
assigns	to	each	customer	a	monthly	rating.	The	resulting	CustomerRanked	table	is
shown	in	Figure	6-11.

FIGURE	6-11	The	rating	snapshot	stores	the	ratings	of	customers	on	a	monthly
basis.

Depending	on	how	much	a	customer	buys,	that	customer	may	be	rated
differently	in	different	months.	Or,	there	may	be	several	months	when	the	customer
has	no	rating	at	all.	(This	only	means	the	customer	did	not	buy	anything	in	those
months.)	If	you	add	the	table	to	the	model	and	build	the	proper	set	of	relationships,
you	will	obtain	the	data	model	shown	in	Figure	6-12.	If,	at	this	point,	you	think	we
are	building	a	derived	snapshot,	you	are	right.	CustomerRanked	is	a	derived
snapshot	that	precomputes	a	metric	based	on	Sales,	which	actually	stores	the	facts.

FIGURE	6-12	The	snapshot,	as	always,	looks	like	another	fact	table	in	the	model.

You	can	use	this	table	to	build	a	simple	report	that	shows	the	number	of
customers	rated	in	different	months	and	years.	It	is	worth	noting	that	this	snapshot
must	be	aggregated	by	using	a	distinct	count,	to	consider	each	customer	only	once
at	the	total	level.	The	following	formula	is	used	to	generate	the	measure	found	in
the	report	shown	in	Figure	6-13:
Click	here	to	view	code	image

NumOfRankedCustomers	:=	

CALCULATE	(

				DISTINCTCOUNT	(CustomerRanked[CustomerKey])	

)

FIGURE	6-13	Using	a	snapshot	to	count	the	number	of	customers	for	a	given
rating	is	straightforward.

So	far,	we	have	built	a	snapshot	table	that	looks	very	similar	to	the	example	in
the	previous	section,	which	ended	with	a	suggestion	not	to	use	a	snapshot	for	that
scenario.	What	is	different	here?	The	following	are	some	important	differences:

	The	rating	is	assigned,	depending	on	how	much	the	customer	spent,	no
matter	what	product	was	purchased.	Because	the	definition	of	the	rating	is
independent	from	the	external	selection,	it	makes	sense	to	precompute	it	and
to	store	it	once	and	forever.
	Further	slicing	at	the	day	level,	for	example,	does	not	make	much	sense
because	the	rating	is	assigned	based	on	the	sales	of	the	whole	month.
Therefore,	the	very	concept	of	month	is	included	in	the	rating	assigned.

Those	considerations	are	already	strong	enough	to	make	the	snapshot	a	good
solution.	Nevertheless,	there	is	a	much	stronger	reason	to	do	it.	You	can	turn	this
snapshot	into	a	transition	matrix	and	perform	much	more	advanced	analyses.
A	transition	matrix	aims	to	answer	questions	like,	what	is	the	evolution	of	the

ranking	of	customers	who	were	ranked	medium	in	January	2007?	The	report
required	is	like	the	one	shown	in	Figure	6-14.	It	contains	the	customers	who	had	a
medium	ranking	in	January	2007,	and	shows	how	their	rankings	changed	over
time.

FIGURE	6-14	The	transition	matrix	provides	very	powerful	insights	in	your
customer	analysis.

Figure	6-14	shows	that	in	January	2007,	40	customers	had	a	medium	ranking.
Of	those	customers,	one	was	ranked	high	in	April,	one	low	in	May,	and	one	high
in	November.	In	2009,	four	of	those	40	customers	had	a	low	ranking	in	June.	As
you	see,	you	set	a	filter	for	a	given	ranking	in	one	month.	This	filter	identifies	a	set
of	customers.	You	can	then	analyze	how	that	set	of	customers	behaved	in	other
periods.
To	build	the	transition	matrix,	you	must	perform	the	following	two	distinct

operations:
1.	Identify	the	customers	who	were	ranked	with	a	given	ranking	and	date.
2.	Check	how	they	were	ranked	in	different	periods.
Let	us	start	with	the	first	operation.	We	want	to	isolate	the	customers	with	a

given	rating	in	one	month.	Because	we	want	to	use	a	slicer	to	fix	the	snapshot	date
and	rating,	we	need	a	helper	table	to	use	as	the	filter.	This	point	is	important	to
understand.	As	an	example,	think	about	filtering	the	date	of	the	snapshot	(January
2007,	in	this	example).	If	you	use	the	Date	table	as	a	filter,	then	you	use	the	same
table	that	will	be	used	also	to	show	the	evolution	over	time.	In	other	words,	if	you
use	the	Date	table	to	filter	January	2007,	that	filter	will	be	effective	on	the	entire
model,	making	it	impossible	(or,	rather,	very	hard)	to	build	the	report	because	you
will	not	be	able	to	see	the	evolution	in,	for	example,	February	2007.
Because	you	cannot	use	the	Date	table	as	a	filter	for	the	snapshot,	the	best

option	is	to	build	a	new	table	to	serve	as	the	source	of	the	slicers.	Such	a	table
contains	two	columns:	one	with	the	different	ratings	and	one	with	the	months
referenced	by	the	fact	table.	You	can	build	it	using	the	following	code:

Click	here	to	view	code	image

SnapshotParameters	=	

SELECTCOLUMNS	(

				ADDCOLUMNS	(

								SUMMARIZE	(

												CustomerRanked,	

												'Date'[Calendar	Year],	

												'Date'[Month],	

													CustomerRanked[Rating]	

),

								"DateKey",	CALCULATE	(MAX	('Date'[DateKey]))

),

				"DateKey",	[DateKey],

				"Year	Month",	FORMAT	(

								CALCULATE	(MAX	('Date'[Date])),	

								"mmmm	YYYY"	

),

				"Rating",	[Rating]

)

Figure	6-15	shows	the	resulting	table	(SnapshotParameters).

FIGURE	6-15	The	SnapshotParameters	table	contains	three	columns.

The	table	contains	both	the	date	key	(as	an	integer)	and	the	year	month	(as	a
string).	You	can	put	the	string	in	a	slicer	and	grab	the	corresponding	key	that	will
be	useful	when	moving	the	filter	to	the	snapshot	table.
This	table	should	not	be	related	to	any	other	table	in	the	model.	It	is	merely	a

helper	table,	used	as	the	source	of	two	slicers:	one	for	the	snapshot	date	and	one
for	the	snapshot	rating.	The	data	model	is	now	in	place.	You	can	select	a	starting

point	for	the	ranking	and	put	the	years	and	months	in	the	rows	of	a	matrix.	The
following	DAX	code	will	compute	the	desired	number—that	is	the	number	of
customers	who	had	a	given	rating	in	the	selection	from	the	slicer	and	a	different
rating	in	different	periods:
Click	here	to	view	code	image

Transition	Matrix	=

CALCULATE	(

				DISTINCTCOUNT	(CustomerRanked[CustomerKey]),

				CALCULATETABLE(

								VALUES	(CustomerRanked[CustomerKey]),

								INTERSECT	(

												ALL	(CustomerRanked[Rating]),

												VALUES	(SnapshotParameters[Rating])

),

								INTERSECT	(

												ALL	(CustomerRanked[DateKey]),

												VALUES	(SnapshotParameters[DateKey])

),

								ALL	(CustomerRanked[RatingSort]),

								ALL	('Date')

)

)

This	code	is	not	easy	to	understand	at	first	sight,	but	we	suggest	you	to	spend
some	time	studying	it	carefully.	It	expresses	so	much	power	in	so	few	lines	that
you	will	probably	grasp	some	new	ideas	from	understanding	it.
The	core	of	the	code	is	the	CALCULATETABLE	function,	which	uses	two

INTERSECT	calls.	INTERSECT	is	used	to	apply	the	selection	from
SnapshotParameters	(the	table	used	for	the	slicers)	as	a	filter	of	CustomerRanked.
There	are	two	INTERSECT	calls:	one	for	the	date,	one	for	the	ranking.	When	this
filter	is	in	place,	CALCULATETABLE	returns	the	keys	of	the	customers	who	were
ranked	with	the	given	rating	at	the	given	date.	Thus,	the	outer	CALCULATE	will
compute	the	number	of	customers	ranked	in	different	periods,	but	limit	the	count	to
only	the	ones	selected	by	CALCULATETABLE.	The	resulting	report	is	the	one
already	shown	in	Figure	6-14.
From	a	modeling	point	of	view,	it	is	interesting	that	you	need	a	snapshot	table	to

perform	this	kind	of	analysis.	In	fact,	in	this	case,	the	snapshot	is	used	to
determine	the	set	of	customers	who	had	a	specific	rating	in	a	given	month.	This

information	is	further	used	as	a	filter	to	perform	an	analysis	of	their	behavior	over
time.
You	have	seen	the	following	important	points	so	far:
	A	snapshot	makes	perfect	sense	when	you	want	to	freeze	the	calculation.	In
this	example,	you	wanted	to	focus	on	customers	with	a	given	ranking	in	one
specific	month.	The	snapshot	offers	you	an	easy	way	to	do	this.
	If	you	need	to	filter	the	snapshot	date	but	you	don’t	want	this	filter	to
propagate	to	the	model,	you	can	keep	the	table	unrelated	and	use
INTERSECT	to	activate	the	filter	on	demand.
	You	can	use	the	snapshot	as	a	tool	to	compute	a	filter	over	the	customers.	In
the	example,	you	wanted	to	examine	the	behavior	of	those	customers	in	other
periods	of	time.

One	of	the	interesting	aspects	of	the	transition	matrix	is	that	you	can	use	it	to
compute	more	complex	numbers.

Conclusions
Snapshots	are	useful	tools	to	reduce	the	size	of	a	table	at	the	price	of	granularity.
By	pre-aggregating	data,	your	formulas	will	be	much	faster.	In	addition,	as	you
have	seen	with	the	transition	matrix	pattern,	you	open	a	whole	set	of	analytical
possibilities	by	snapshotting	the	data.	With	that	said,	a	snapshot	comes	with	an
increased	complexity	in	the	model.	This	chapter	explored	the	following	important
points:

	Snapshots	almost	always	require	aggregations	other	than	a	simple	sum.	You
must	carefully	analyze	the	kind	of	aggregation	you	require	or,	at	worst,	fully
avoid	subtotals.
	The	granularity	of	snapshots	is	always	different	from	the	granularity	of
normal	fact	tables.	You	must	take	this	into	account	when	building	reports,	as
speed	comes	with	limitations.
	You	can	often	avoid	derived	snapshots	if	your	model	is	not	too	large.	Use
derived	snapshots	as	a	last	resource	if	optimizing	your	DAX	code	does	not
lead	to	acceptable	performance.
	As	you	saw	with	the	transition	matrix,	snapshots	open	new	possibilities	in
the	analysis	of	data.	There	are	many	more	possibilities	you	can	explore,
depending	on	the	kind	of	business	you	need	to	analyze.

Using	snapshots	is	not	easy.	This	chapter	provided	some	simple	and	advanced
scenarios.	We	suggest	you	learn	the	simple	scenarios,	spend	some	time	thinking

about	how	you	can	benefit	from	the	harder	ones,	and	move	slowly	through	the	use
of	snapshots	and	transition	matrixes.	Even	seasoned	data	modelers	will	find	it
hard	to	author	some	of	the	code	in	this	chapter.	Nevertheless,	if	needed,	transition
matrixes	are	extremely	powerful	for	grabbing	insights	from	your	data.

Chapter	7.	Analyzing	date	and	time	intervals

Chapter	4,	“Working	with	date	and	time,”	discussed	time	intelligence	and
calculations	over	time.	This	chapter	will	show	you	several	models	that,	again,	use
time	as	the	primary	analytical	tool.	This	time,	however,	we	are	not	interested	in
discussing	calculations	like	year-to-date	(YTD)	and	year-over-year.	Instead,	we
want	to	discuss	scenarios	in	which	time	is	the	focus	of	the	analysis,	but	not
necessarily	the	main	dimension	used	to	slice.	Thus,	we	will	show	you	scenarios
like	computing	the	number	of	working	hours	in	a	period,	the	number	of	employees
available	in	different	time	frames	for	various	projects,	and	the	number	of	orders
currently	being	processed.
What	makes	these	models	different	from	a	standard	model?	In	a	standard	model,

a	fact	is	an	atomic	event	that	happened	at	a	very	precise	point	in	time.	In	these
models,	on	the	other	hand,	facts	are	typically	events	with	durations,	and	they
extend	their	effect	for	some	time.	Thus,	what	you	store	in	the	fact	table	is	not	the
date	of	the	event,	but	the	point	in	time	when	the	event	started.	Then,	you	must	work
with	DAX	and	with	the	model	to	account	for	the	duration	of	the	event.
Concepts	like	time,	duration,	and	periods	are	present	in	these	models.

However,	as	you	will	see,	the	focus	is	not	only	on	slicing	by	time,	but	also	on
analyzing	the	facts	with	durations.	Having	time	as	one	of	the	numbers	to	aggregate
or	to	consider	during	the	analysis	makes	these	models	somewhat	complex.	Careful
modeling	is	required.

Introduction	to	temporal	data
Having	read	this	book	so	far,	you	are	very	familiar	with	the	idea	of	using	a	date
dimension	to	slice	your	data.	This	allows	you	to	analyze	the	behavior	of	facts	over
time,	by	using	the	date	dimension	to	slice	and	dice	your	values.	When	we	speak
about	facts,	we	usually	think	about	events	with	numbers	associated	with	them,
such	as	the	number	of	items	sold,	their	price,	or	the	age	of	a	customer.	But
sometimes,	the	fact	does	not	happen	at	a	given	point	in	time.	Instead,	it	starts	at	a
given	point	in	time,	and	then	its	effect	has	a	duration.
Think,	for	example,	about	a	normal	worker.	You	can	model	the	fact	that,	on	a

given	date,	that	worker	was	working,	produced	some	amount	of	work,	and	earned
a	specific	amount	of	money.	All	this	information	is	stored	as	normal	facts.	At	the
same	time,	you	might	store	in	the	model	the	number	of	hours	that	person	worked,
to	be	able	to	summarize	them	at	the	end	of	the	month.	In	such	a	case,	a	simple

model	like	the	one	shown	in	Figure	7-1	looks	correct.	There,	you	have	two
dimensions,	Workers	and	Date,	and	a	Schedule	fact	table	with	the	relevant	keys
and	values.

FIGURE	7-1	This	figure	shows	a	simple	data	model	for	handling	working
schedules.

It	might	be	the	case	that	workers	are	paid	at	a	different	rate,	depending	on	the
time	of	the	day.	Night	shifts,	for	example,	are	typically	paid	more	than	day	shifts.
You	can	see	this	effect	in	Figure	7-2,	which	shows	the	Schedule	table	content,
where	the	hourly	wage	for	shifts	starting	after	6:00	p.m.	is	higher.	(You	can	obtain
such	a	rate	dividing	Amount	by	HoursWorked.)

FIGURE	7-2	This	figure	shows	the	contents	of	the	Schedule	table.

You	can	now	use	this	simple	dataset	to	build	a	report	that	shows	the	hours
worked	on	a	monthly	basis	and	the	amount	earned	by	the	workers.	The	matrix	is
shown	in	Figure	7-3.

FIGURE	7-3	This	figure	shows	a	simple	matrix	report	on	top	of	the	schedule	data
model.

At	first	sight,	the	numbers	look	correct.	However,	look	again	at	Figure	7-2,
focusing	your	attention	on	the	days	at	the	end	of	each	period	(either	January	or
February).	You’ll	notice	that	at	the	end	of	January,	the	shifts	start	at	9:00	p.m.,	and
because	of	their	duration,	they	extend	into	the	next	day.	Moreover,	because	it	is	the
end	of	the	month,	they	also	extend	to	the	next	month.	It	would	be	much	more
accurate	to	state	that	some	of	the	amount	of	January	31st	needs	to	be	accounted	for
in	February,	and	some	of	the	amount	of	February	29th	needs	to	be	accounted	for	in
March.	The	data	model	does	not	produce	this	result.	Instead	it	looks	like	all	the
hours	are	being	worked	in	the	day	that	the	shift	started,	even	if	we	know	this	is	not
the	case.
Because	this	is	only	an	introductory	section,	we	do	not	want	to	dive	into	the

details	of	the	solution.	These	will	be	shown	throughout	the	rest	of	the	chapter.	The
point	here	is	that	the	data	model	is	not	accurate.	The	problem	is	that	each	of	the
events	stored	in	the	fact	table	has	a	duration,	and	this	duration	extends	its	effects
outside	of	the	granularity	that	is	defined	in	the	fact	table	itself.	In	other	words,	the
fact	table	has	a	granularity	at	the	day	level,	but	the	facts	it	stores	might	contain
information	related	to	different	days.	Because	of	this,	we	have	(again!)	a
granularity	issue.	A	very	similar	scenario	happens	whenever	you	have	to	analyze
durations.	Each	fact	that	has	a	duration	falls	into	a	similar	scenario	and	needs	to
be	handled	with	a	lot	of	care.	Otherwise,	you	end	up	with	a	data	model	that	does
not	accurately	represent	the	real	world.
This	is	not	to	say	that	the	data	model	is	wrong.	It	all	depends	on	the	kinds	of

questions	you	want	your	data	model	to	answer.	The	current	model	is	totally	fine
for	many	reports,	but	it	is	not	accurate	enough	for	certain	kinds	of	analysis.	You
might	decide	that	the	full	amount	should	be	shown	in	the	month	when	the	shift
starts,	and	in	most	scenarios,	this	would	be	perfectly	reasonable.	However,	this	is
a	book	about	data	modeling,	so	we	need	to	build	the	right	model	for	different
requirements.
In	this	chapter,	we	will	deal	with	scenarios	like	the	one	in	the	example,

carefully	studying	how	to	model	them	to	correctly	reflect	the	data	they	need	to

store.

Aggregating	with	simple	intervals
Before	diving	into	the	complexity	of	interval	analysis,	let	us	start	with	some
simpler	scenarios.	In	this	section,	we	want	to	show	you	how	to	correctly	define	a
time	dimension	in	your	model.	In	fact,	most	of	the	scenarios	we	are	managing
require	time	dimensions,	and	learning	how	to	model	them	is	very	important.
In	a	typical	database,	you	will	find	a	DateTime	column	that	stores	both	the	date

and	the	time	in	the	same	column.	Thus,	an	event	that	started	at	09:30	a.m.	on
January	15,	2017	will	contain	a	single	column	with	that	precise	point	in	time.
Even	if	this	is	the	data	you	find	in	the	source	database,	we	urge	you	to	split	it	into
two	different	columns	in	your	data	model:	one	for	the	date	and	one	for	the	time.
The	reason	is	that	Tabular,	which	is	the	engine	of	both	Power	Pivot	and	Power	BI,
works	much	better	with	small	dimensions	than	with	larger	ones.	If	you	store	date
and	time	in	the	same	column,	you	will	need	a	much	larger	dimension	because,	for
every	single	day,	you	need	to	store	all	the	different	hours	and	minutes.	By	splitting
the	information	into	two	columns,	the	date	dimension	contains	only	the	day
granularity,	and	the	time	dimension	contains	only	the	time	granularity.	To	host	10
years	of	data,	for	example,	you	need	around	3,650	rows	in	the	date	dimension,	and
1,440	rows	in	the	time	dimension,	if	you	are	working	at	the	individual	minute
level.	On	the	other	hand,	a	single	date/time	dimension	would	require	around
5,256,000	rows,	which	is	3,650	times	1,440.	The	difference	in	terms	of	query
speed	is	tremendous.
Of	course,	you	need	to	perform	the	operation	of	splitting	the	date/time	column

into	two	columns	before	the	data	enters	your	model.	In	other	words,	you	can	load
a	date/time	column	in	your	model,	and	then	build	two	calculated	columns	on
which	to	base	the	relationship—one	for	the	date	and	one	for	the	time.	With	that
said,	the	memory	used	for	the	date/time	column	is	basically	a	waste	of	resources
because	you	will	never	use	that	column.	You	can	obtain	the	same	result	with	much
less	memory	consumption	by	performing	the	split	using	the	Excel	or	Power	BI
Query	Editor	or,	for	more	advanced	users,	using	a	SQL	view	that	performs	the
splitting.	Figure	7-4	shows	a	very	simple	time	dimension.

FIGURE	7-4	This	figure	shows	a	very	basic	time	dimension	at	the	minute
granularity.

If	the	time	dimension	contained	only	hours	and	minutes,	it	would	not	be	of	much
use	unless	you	needed	to	perform	an	analysis	at	a	very	detailed	level.	You	are
likely	to	add	some	attributes	to	the	dimension	to	be	able	to	group	the	data	in
different	buckets.	For	example,	in	Figure	7-5,	we	added	two	columns	so	we	could
group	the	time	in	day	periods	(night,	morning,	and	so	on)	and	in	hourly	buckets.
We	then	reformatted	the	Time	column.

FIGURE	7-5	You	can	group	time	in	different	buckets	by	using	simple	calculated
columns.

You	must	take	particular	care	when	analyzing	time	buckets.	In	fact,	even	if	it
looks	very	natural	to	define	a	time	dimension	at	the	minute	level	and	then	group	it
using	buckets,	you	may	be	able	to	define	the	dimension	at	the	bucket	level.	In	other
words,	if	you	are	not	interested	in	analyzing	data	at	the	minute	level	(which	will
usually	be	the	case),	but	only	want	to	perform	an	analysis	at	the	half-hour	level,

then	using	the	dimension	at	the	minute	level	is	a	waste	of	space	and	time.	If	you
store	the	dimension	at	the	half-hour	level,	the	whole	dimension	will	use	48	rows
instead	of	1,440.	This	gives	you	two	orders	of	magnitude	and	a	tremendous	saving
in	terms	of	RAM	and	query	speed	because	of	the	savings	applied	to	the	larger	fact
table.	Figure	7-6	shows	you	the	same	time	dimension	as	Figure	7-5,	but	in	this
case,	it	is	stored	at	the	half-hour	level.
Of	course,	if	you	store	the	time	at	the	half-hour	level,	you	will	need	to	compute

a	column	in	the	fact	table	that	acts	as	an	index	for	the	table.	In	Figure	7-6,	we	used
Hours	×	60	+	Minutes	as	the	index	instead	of	using	a	simple	auto-increment
column.	This	makes	it	much	easier	to	compute	the	time	key	in	the	fact	table,	by
starting	from	the	date/time.	You	can	obtain	it	by	using	simple	math,	without	the
need	to	perform	complex	ranged	lookups.

FIGURE	7-6	By	storing	at	the	half-hour	level,	the	table	becomes	much	smaller.

Let	us	repeat	this	very	important	fact:	Date	and	time	must	be	stored	in	separate
columns.	After	many	years	of	consulting	different	customers	with	different	needs,
we	have	yet	to	find	many	cases	where	storing	a	single	date/time	column	is	the	best
solution.	This	is	not	to	say	that	it	is	forbidden	to	store	a	date/time	column.	In	very
rare	cases,	using	a	date/time	column	is	the	only	viable	option.	However,	it	is	so
rare	to	find	a	good	case	for	a	date/time	column	that	we	always	default	to	splitting
the	columns—although	we	are	ready	to	change	our	minds	if	(and	only	if)	there	is	a
strong	need	to	do	so.	Needless	to	say,	this	does	not	typically	happen.

Intervals	crossing	dates
In	the	previous	section,	you	learned	how	to	model	a	time	dimension.	It	is	now	time
to	go	back	to	the	introduction	and	perform	a	deeper	analysis	of	the	scenario	in
which	events	happen,	and	they	have	a	duration	that	might	span	to	the	next	day.

As	you	might	recall,	we	had	a	Schedule	table	that	contained	the	worked	hours.
Because	a	worker	might	start	a	shift	in	the	late	evening	(or	even	at	night),	the
working	day	could	span	to	the	next	day,	making	it	difficult	to	perform	analysis	on
it.	Let	us	recall	the	data	model,	which	is	shown	in	Figure	7-7.

FIGURE	7-7	This	figure	shows	a	simple	data	model	for	handling	working
schedules.

First,	let	us	see	how	to	perform	the	analysis	on	this	model	in	the	right	way	by
using	some	DAX	code.	Be	aware	that	using	DAX	is	not	the	optimal	solution.	We
use	this	example	only	to	show	how	complex	the	code	might	become	if	you	do	not
work	with	the	correct	model.
In	this	very	specific	example,	a	shift	might	span	over	two	days.	You	can	obtain

the	real	working	hours	by	first	computing	the	working	hours	in	the	day	and	then
removing	from	the	day	the	shift	hours	that	might	be	in	the	next	day.	After	this	first
step,	you	must	sum	the	potential	working	hours	of	the	previous	day	that	spanned	to
the	current	day.	This	can	be	accomplished	by	the	following	DAX	code:
Click	here	to	view	code	image

Real	Working	Hours	=

--

--		Computes	the	working	hours	in	the	same	day

--	

SUMX	(

				Schedule,

				IF	(

								Schedule[TimeStart]	+	Schedule[HoursWorked]	*	(1	/	24)	<=	1,

								Schedule[HoursWorked],

								(1	-	Schedule[TimeStart])	*	24

)

)

--

-

-		Check	if	there	are	hours	today,	coming	from	a	previous	day	that	overlapped	here

--

+	SUMX	(

				VALUES	('Date'[Date]),

				VAR

								CurrentDay	=	'Date'[Date]

				RETURN

								CALCULATE	(

												SUMX	(

																Schedule,

																IF	(

																				Schedule[TimeStart]	+	Schedule[HoursWorked]	*	(1	/	24)	>	1,

																				Schedule[HoursWorked]	-	(1	-	Schedule[TimeStart])	*	24

)

),

												'Date'[Date]	=	CurrentDay	-	1

)

)

Now	the	code	returns	the	correct	number,	as	shown	in	Figure	7-8.

FIGURE	7-8	The	new	measure	shows	the	working	hours	in	the	correct	day.

The	problem	appears	to	have	been	solved.	However,	at	this	point,	the	real
question	is	whether	you	really	want	to	write	such	a	measure.	We	had	to	because
we	are	writing	a	book	and	we	needed	to	demonstrate	how	complex	it	is,	but	you
are	not,	and	you	might	have	better	options.	The	chances	of	making	mistakes	with
such	a	complex	piece	of	code	are	very	high.	Moreover,	this	works	only	in	the	very

special	case	in	which	an	event	spans	two	consecutive	days.	If	an	event	has	a
duration	of	more	than	two	days,	this	code	becomes	much	more	complex,	thus
increasing	the	chances	of	making	mistakes.
As	is	usually	the	case	in	this	book	(and	in	the	real	world),	the	solution	is	not

writing	complex	DAX	code.	The	best	solution	is	to	change	the	data	model	so	that
it	reflects,	in	a	more	precise	way,	the	data	you	need	to	model.	Then,	the	code	will
be	simpler	(and	faster).
There	are	several	options	for	changing	this	model.	As	we	anticipated	earlier	in

this	chapter,	the	problem	is	that	you	are	storing	data	at	the	wrong	granularity	level.
In	fact,	you	must	change	the	granularity	if	you	want	to	be	able	to	slice	by	the	hours
the	employees	actually	worked	in	a	day	and	if	you	are	considering	the	night	shift
as	belonging	to	the	calendar	day.	Instead	of	storing	a	fact	that	says,	“Starting	on
this	day,	the	worker	worked	for	some	hours,”	you	must	store	a	fact	that	says,	“On
this	given	day,	the	worker	worked	for	so	many	hours.”	For	example,	if	a	worker
starts	a	shift	on	September	1st	and	ends	it	on	September	2nd,	you	will	store	two
rows:	one	with	the	hours	on	September	1st	and	one	with	the	hours	on	September
2nd,	effectively	splitting	the	single	row	into	multiple	ones.
Thus,	an	individual	row	in	the	previous	fact	table	might	as	well	be	transformed

into	multiple	rows	in	the	new	data	model.	If	a	worker	starts	a	shift	during	the	late
evening,	then	you	will	store	two	rows	for	the	shift—one	for	the	day	when	the
work	started,	with	the	correct	starting	time,	and	another	on	the	next	day,	starting	at
midnight,	with	the	remaining	hours.	If	the	shift	spans	multiple	days,	then	you	can
generate	multiple	rows.	This,	of	course,	requires	a	more	complicated	data
preparation,	which	we	do	not	show	in	the	book	because	it	involves	quite	complex
M	code.	However,	you	can	see	this	in	the	companion	content,	if	you	are	interested.
The	resulting	Schedule	table	is	shown	in	Figure	7-9,	where	you	can	see	several
days	starting	at	midnight,	which	are	the	continuation	of	the	previous	days.	The
hours	worked	have	been	adjusted	during	Extract,	Transform,	Load	(ETL).

FIGURE	7-9	The	Schedule	table	now	has	a	lower	granularity	at	the	day	level.

Because	of	this	change	in	the	model,	which	is	correcting	the	granularity,	now
you	can	easily	aggregate	values	by	using	a	simple	SUM.	You	will	obtain	the
correct	result	and	will	avoid	the	complexity	shown	in	the	previous	DAX	code.
A	careful	reader	might	notice	that	we	fixed	the	field	containing	HoursWorked,

but	we	did	not	perform	the	same	operation	for	Amount.	In	fact,	if	you	aggregate	the
current	model	that	shows	the	sum	of	the	amount,	you	will	obtain	a	wrong	result.
This	is	because	the	full	amount	will	be	aggregated	for	different	days	that	might
have	been	created	because	of	midnight	crossing.	We	did	that	on	purpose	because
we	wanted	to	use	this	small	mistake	to	investigate	further	on	the	model.
An	easy	solution	is	to	correct	the	amount	by	simply	dividing	the	hours	worked

during	the	day	by	the	total	hours	worked	in	the	shift.	You	should	obtain	the
percentage	of	the	amount	that	should	be	accounted	for	the	given	day.	This	can	be
done	as	part	of	the	ETL	process,	when	preparing	the	data	for	analysis.	However,
if	you	strive	for	precision,	then	it	is	likely	that	the	hourly	rate	is	different
depending	on	the	time	of	the	day.	There	might	be	shifts	that	mix	different	hourly
rates.	If	this	is	the	case,	then,	again,	the	data	model	is	not	accurate	enough.
If	the	hourly	price	is	different,	then	you	must	change,	again,	the	data	model	to	a

lower	level	of	granularity	(that	is,	a	higher	level	of	detail)	by	moving	the
granularity	to	the	hourly	level.	You	have	the	option	of	making	it	easy	by	storing
one	fact	per	hour,	or	by	pre-aggregating	values	when	the	hourly	rate	does	not

change.	In	terms	of	flexibility,	moving	to	the	hourly	level	gives	you	more	freedom
and	easier-to-produce	reports	because,	at	that	point,	you	also	have	the	option	of
analyzing	time	across	different	days.	This	would	be	much	more	complex	in	a	case
where	you	pre-aggregate	the	values.	On	the	other	hand,	the	number	of	rows	in	the
fact	table	grows	if	you	lower	the	granularity.	As	is	always	the	case	in	data
modeling,	you	must	find	the	perfect	balance	between	size	and	analytical	power.
In	this	example,	we	decided	to	move	to	the	hourly	level	of	granularity,

generating	the	model	shown	in	Figure	7-10.

FIGURE	7-10	The	new	measure	shows	the	working	hours	in	the	correct	day.

In	this	new	model,	the	fact	basically	says,	“This	day,	at	this	hour,	the	employee
worked.”	We	increased	the	detail	to	the	lowest	granularity.	At	this	point,
computing	the	number	of	hours	worked	does	not	even	require	that	we	perform	a
SUM.	In	fact,	it	is	enough	to	count	the	number	of	rows	in	Schedule	to	obtain	the
number	of	worked	hours,	as	shown	in	the	following	WorkedHours	measure:
Click	here	to	view	code	image

WorkedHours	:=	COUNTROWS	(Schedule)

In	case	you	have	a	shift	starting	in	the	middle	of	the	hour,	you	can	store	the
number	of	minutes	worked	in	that	hour	as	part	of	the	measure	and	then	aggregate
using	SUM.	Alternatively,	in	very	extreme	cases,	you	can	move	the	granularity	to	a
lower	level—to	the	half-hour	or	even	the	minute	level.

As	mentioned,	one	of	the	big	advantages	of	splitting	date	and	time	is	to	be	able
to	analyze	the	time	as	a	dimension	by	itself,	unrelated	to	dates.	If	you	want	to
analyze	the	shifts	for	which	a	worker	is	mostly	employed,	you	can	build	a	simple
matrix	like	the	one	shown	in	Figure	7-11.	In	this	figure,	we	used	a	version	of	the
time	dimension	that	includes,	as	indicated	earlier	in	the	chapter,	day	periods	that
contain	only	24	rows.	This	is	because	we	are	interested	in	the	hours	only.

FIGURE	7-11	This	figure	shows	an	analysis	of	time	periods	that	are	unrelated	to
dates.

At	this	point,	you	can	compute	the	hourly	rate	(which	will	probably	require
some	sort	of	configuration	table)	and	perform	a	much	finer	analysis	on	the	model.
Nevertheless,	in	this	demonstration,	we	were	mainly	focused	on	finding	the
correct	granularity.	We	can	stop	analyzing	this	example	here.
The	important	part	of	this	demo	is	that,	by	finding	the	correct	granularity,	we

moved	from	a	very	complex	DAX	expression	to	a	much	simpler	one.	At	the	same
time,	we	increased	the	analytical	power	of	our	data	model.	We	are	perfectly
aware	of	how	many	times	we	repeat	the	same	concept.	But	this	way,	you	can	see
how	important	it	is	to	perform	a	deep	analysis	of	the	granularity	needed	by	your
model,	depending	on	the	kind	of	analysis	you	want	to	perform.
It	does	not	matter	how	the	original	data	is	shaped.	As	a	modeler,	you	must

continue	massaging	your	data	until	it	reaches	the	shape	needed	by	your	model.
Once	it	reaches	the	optimal	format,	all	the	numbers	come	out	quickly	and	easily.

Modeling	working	shifts	and	time	shifting
In	the	previous	example,	we	analyzed	a	scenario	where	the	working	shifts	were
easy	to	get.	In	fact,	the	time	at	which	the	worker	started	the	shift	was	part	of	the
model.	This	is	a	very	generic	scenario,	and	it	is	probably	more	complex	than	what
the	average	data	analyst	needs	to	cover.
In	fact,	having	a	fixed	number	of	shifts	during	the	day	is	a	more	common

scenario.	For	example,	if	a	worker	normally	works	eight	hours	a	day,	there	can	be

three	different	shifts	that	are	alternately	assigned	to	a	worker	during	the	month.	It
is	very	likely	that	one	of	these	shifts	will	cross	into	the	next	day,	and	this	makes
the	scenario	look	very	similar	to	the	previous	one.
Another	example	of	time	shifting	appears	in	a	scenario	where	you	want	to

analyze	the	number	of	people	who	are	watching	a	given	television	channel,	which
is	commonly	used	to	understand	the	composition	of	the	audience	of	a	show.	For
example,	suppose	a	show	starts	at	11:30	p.m.,	and	it	is	two	hours	long,	meaning	it
will	end	the	next	day.	Nevertheless,	you	want	it	to	be	included	in	the	previous	day.
And	what	about	a	show	that	starts	at	half	past	midnight?	Do	you	want	to	consider
it	in	competition	with	the	previous	show	that	started	one	hour	earlier?	Most	likely,
the	answer	is	yes,	because	no	matter	when	the	two	shows	started,	they	were
playing	at	the	same	time.	It	is	likely	an	individual	chose	either	one	or	the	other.
There	is	an	interesting	solution	to	both	these	scenarios	that	requires	you	to

broaden	your	definition	of	time.	In	the	case	of	working	shifts,	the	key	is	to	ignore
time	completely.	Instead	of	storing	in	the	fact	table	the	starting	time,	you	can
simply	store	the	shift	number,	and	then	perform	the	analysis	using	the	shift	number
only.	If	you	need	to	consider	time	in	your	analysis,	then	the	best	option	is	to	lower
the	granularity	and	use	the	previous	solution.	However,	in	most	cases,	we	solved
the	model	by	simply	removing	the	concept	of	time	from	the	model.
The	audience	analysis	scenario	is	somewhat	different,	and	the	solution,

although	strange,	is	very	simple.	You	might	want	to	consider	the	events	happening
right	after	midnight	as	belonging	to	the	previous	day	so	that	when	you	analyze	the
audience	of	one	day,	you	consider	in	the	total	what	happened	after	midnight.	To	do
so,	you	can	easily	implement	a	time-shifting	algorithm.	For	example,	instead	of
considering	midnight	as	the	beginning	of	the	day,	you	can	make	the	day	start	at
02:00	a.m.	You	can	then	add	two	more	hours	to	the	standard	time	so	that	the	time
ranges	from	02:00	to	26:00	instead	of	going	from	00:00	to	24:00.	It	is	worth
noting	that,	for	this	specific	example,	using	the	24-hour	format	(26,	to	be	precise)
works	much	better	than	using	a.m./p.m.
Figure	7-12	shows	a	typical	report	that	uses	this	time-shifting	technique.	Note

that	the	custom	period	starts	at	02:00	and	ends	at	25:59.	The	total	is	still	24	hours,
but	by	shifting	time	in	this	way,	when	you	analyze	the	audience	of	one	day,	you
also	include	the	first	two	hours	of	the	next	day.

FIGURE	7-12	By	using	the	time-shifting	technique,	the	day	starts	at	02:00	instead
of	starting	at	midnight.

Obviously,	when	loading	the	data	model	for	such	a	scenario,	you	will	need	to
perform	a	transformation.	However,	you	will	not	be	able	to	use	DateTime	columns
because	there	is	no	such	time	as	25:00	in	a	normal	date/time.

Analyzing	active	events
As	you	have	seen,	this	chapter	mainly	covers	fact	tables	with	the	concept	of
duration.	Whenever	you	perform	an	analysis	of	these	kinds	of	events,	one
interesting	model	is	one	that	analyzes	how	many	events	were	active	in	a	given
period.	An	event	is	considered	active	if	it	is	started	and	not	yet	finished.	There	are
many	different	kinds	of	these	events,	including	orders	in	a	sales	model.	An	order
is	received,	it	is	processed,	and	then	it	is	shipped.	In	the	period	between	the	date
of	receipt	and	the	date	of	shipment,	the	order	is	active.	(Of	course,	in	performing
this	analysis,	you	can	go	further	and	think	that	between	shipment	and	delivery	to
the	recipient,	the	order	is	still	active,	but	in	a	different	status.)
For	the	sake	of	simplicity,	we	are	not	going	to	perform	a	complex	analysis	of

those	different	statuses.	Here,	we	are	mainly	interested	in	discovering	how	you
can	build	a	data	model	to	perform	an	analysis	of	active	events.	You	can	use	such	a
model	in	different	scenarios,	like	insurance	policies	(which	have	a	start	and	end
date),	insurance	claims,	orders	growing	plants,	or	building	items	with	a	type	of
machinery.	In	all	these	cases,	you	record	as	a	fact	the	event	(such	as	the	plants
grown,	the	order	placed,	or	the	full	event).	However,	the	event	itself	has	two	or

more	dates	identifying	the	process	that	has	been	executed	to	bring	the	event	to	its
conclusion.
Before	starting	to	solve	the	scenario,	let	us	look	at	the	first	consideration	you

must	account	for	when	analyzing	orders.	The	data	model	we	used	through	most	of
this	book	stores	sales	at	the	granularity	of	the	product,	date,	and	customer	level.
Thus,	if	a	single	order	contains	10	different	products,	it	is	represented	with	10
different	lines	in	the	Sales	table.	Such	a	model	is	shown	in	Figure	7-13.

FIGURE	7-13	The	fact	table	in	this	model	stores	individual	sales.

If	you	want	to	count	the	number	of	orders	in	this	model,	you	will	need	to
perform	a	distinct	count	of	the	Order	Number	column	in	Sales,	because	a	given
order	number	will	be	repeated	for	multiple	rows.	Moreover,	it	is	very	likely	that,
if	an	order	was	shipped	in	multiple	packages,	different	lines	in	the	same	order
might	have	different	delivery	dates.	So,	if	you	are	interested	in	analyzing	the	open
orders,	the	granularity	of	the	model	is	wrong.	In	fact,	the	order	as	a	whole	is	to	be
considered	delivered	only	when	all	its	products	have	been	delivered.	You	can
compute	the	date	of	delivery	of	the	last	product	in	the	order	with	some	complex
DAX	code,	but	in	this	case,	it	is	much	easier	to	generate	a	new	fact	table
containing	only	the	orders.	This	will	result	in	a	lower	granularity,	and	it	will

reduce	the	number	of	rows.	Reducing	the	number	of	rows	has	the	benefit	of
speeding	up	the	calculation	and	avoiding	the	need	to	perform	distinct	counts.
The	first	step	is	to	build	an	Orders	table,	which	you	can	do	with	SQL,	or,	as	we

are	doing	in	the	example,	with	a	simple	calculated	table	that	uses	the	following
code:
Click	here	to	view	code	image

Orders	=

SUMMARIZECOLUMNS	(

				Sales[Order	Number],

				Sales[CustomerKey],

				"OrderDateKey",	MIN	(Sales[OrderDateKey]),

				"DeliveryDateKey",	MAX	(Sales[DeliveryDateKey])

)

This	new	table	has	fewer	rows	and	fewer	columns.	It	also	already	contains	the
first	step	of	our	calculation,	which	is	the	determination	of	the	effective	date	of
delivery,	by	taking	into	account	the	last	delivery	date	of	the	order	as	a	whole.	The
resulting	data	model,	once	the	necessary	relationships	are	created,	is	shown	in
Figure	7-14.

FIGURE	7-14	The	new	data	model	contains	two	fact	tables	at	different
granularities.

You	can	see	that	the	Orders	table	has	no	relationships	with	Product.	It	is	worth
noting	that	you	can	also	model	such	a	scenario	using	a	standard	header/detail
table,	with	Orders	as	the	header	and	Sales	as	the	detail.	In	such	a	case,	you	should
take	into	account	all	the	considerations	we	already	made	in	Chapter	2,	“Using
header/detail	tables.”	In	this	section,	we	ignore	the	header/detail	relationship
because	we	are	mainly	interested	in	using	the	Orders	table	only.	Thus,	we	will	use
a	simplified	model,	as	shown	in	Figure	7-15.	(Note	that	in	the	companion	file,	the

Sales	table	is	still	present,	because	Orders	depends	on	it.	However,	we	will	focus
on	these	three	tables	only.)

FIGURE	7-15	This	figure	shows	the	simplified	model	we	use	for	this	demo.

After	the	model	is	in	place,	you	can	easily	build	a	DAX	measure	that	computes
the	number	of	open	orders	by	using	the	following	code:
Click	here	to	view	code	image

OpenOrders	:=

CALCULATE	(

				COUNTROWS	(Orders),

				FILTER	(

								ALL	(Orders[OrderDateKey]),

								Orders[OrderDateKey]	<=	MIN	('Date'[DateKey])

),

				FILTER	(

								ALL	(Orders[DeliveryDateKey]),

								Orders[DeliveryDateKey]	>	MAX	('Date'[DateKey])

),

				ALL	('Date')

)

The	code	itself	is	not	complex.	The	important	point	is	that	because	there	is	a
relationship	between	Orders	and	Date	that	is	based	on	OrderDateKey,	you	must
remove	its	effects	by	using	ALL	on	the	Date	table.	Forgetting	to	do	so	will	return	a
wrong	number—basically	the	same	number	as	the	orders	placed.	The	measure
itself	works	just	fine,	as	you	can	see	in	Figure	7-16,	which	shows	both	the	number
of	orders	received	and	the	number	of	open	orders.

FIGURE	7-16	The	report	shows	the	number	of	orders	received	and	the	number	of
open	orders.

To	check	the	measure,	it	would	be	useful	to	show	both	the	orders	received	and
the	orders	shipped	in	the	same	report.	This	can	be	easily	accomplished	by	using
the	technique	you	learned	in	Chapter	3,	“Using	multiple	fact	tables,”	which	is
adding	a	new	relationship	between	Orders	and	Date.	This	time,	the	relationship
will	be	based	on	the	delivery	date	and	kept	inactive	to	avoid	model	ambiguity.
Using	this	new	relationship,	you	can	build	the	OrdersDelivered	measure	in	the
following	way:
Click	here	to	view	code	image

OrdersDelivered	:=

CALCULATE	(

				COUNTROWS	(Orders),

				USERELATIONSHIP	(Orders[DeliveryDateKey],	'Date'[DateKey])

)

At	this	point,	the	report	looks	easier	to	read	and	check,	as	shown	in	Figure	7-
17.

FIGURE	7-17	Adding	the	OrdersDelivered	measure	makes	the	report	easier	to
understand.

This	model	provides	the	correct	answers	at	the	day	level.	However,	at	the
month	level	(or	on	any	other	level	above	the	day	level),	it	suffers	from	a	serious
drawback.	In	fact,	if	you	remove	the	date	from	the	report	and	leave	only	the	month,
the	result	is	surprising:	The	OpenOrders	measure	always	shows	a	blank,	as	shown
in	Figure	7-18.

FIGURE	7-18	At	the	month	level,	the	measure	produces	the	wrong	(blank)

results.

The	issue	is	that	no	orders	lasted	for	more	than	one	month,	and	this	measure
returns	the	number	of	orders	received	before	the	first	day	of	the	selected	period
and	delivered	after	the	end	of	that	period	(in	this	case,	a	month).	Depending	on
your	needs,	you	must	update	the	measure	to	show	the	value	of	open	orders	at	the
end	of	the	period,	or	the	average	value	of	open	orders	during	the	period.	For
example,	the	version	that	computes	the	open	orders	at	the	end	of	the	period	is
easily	produced	with	the	following	code,	where	we	simply	added	a	filter	for
LASTDATE	around	the	original	formula.
Click	here	to	view	code	image

OpenOrders	:=

CALCULATE	(

				CALCULATE	(

								COUNTROWS	(Orders),

								FILTER	(

												ALL	(Orders[OrderDateKey]),

												Orders[OrderDateKey]	<=	MIN	('Date'[DateKey])

),

								FILTER	(

												ALL	(Orders[DeliveryDateKey]),

												Orders[DeliveryDateKey]	>	MAX	('Date'[DateKey])

),

								ALL	('Date')

),

				LASTDATE	('Date'[Date])

)

With	this	new	formula,	the	result	at	the	month	level	is	as	desired,	as	shown	in
Figure	7-19.

FIGURE	7-19	This	report	shows,	at	the	month	level,	the	orders	that	were	open	on
the	last	day	of	the	month.

This	model	works	just	fine,	but	in	older	versions	of	the	engine	(that	is,	in	Excel
2013	and	in	SQL	Server	Analysis	Services	2012	and	2014),	it	might	result	in	very
bad	performance.	The	new	engine	in	Power	BI	and	Excel	2016	is	much	faster,	but
this	measure	is	still	not	a	top	performer.	Explaining	the	exact	reason	for	this	poor
performance	is	beyond	the	scope	of	this	book,	but	in	a	few	words,	we	can	say	that
the	problem	is	in	the	fact	that	the	condition	of	filtering	does	not	make	use	of
relationships.	Instead,	it	forces	the	engine	to	evaluate	the	two	conditions	in	its
slower	part,	known	as	the	formula	engine.	On	the	other	hand,	if	you	build	the
model	in	such	a	way	that	it	relies	only	on	relationships,	then	the	formula	will	be
faster.
To	obtain	this	result,	you	must	change	the	data	model,	modifying	the	meaning	of

the	facts	in	the	fact	table.	Instead	of	storing	the	duration	of	the	order	by	using	the
start	and	end	date,	you	can	store	a	simpler	fact	that	says,	“this	order,	on	this	date,
was	still	open.”	Such	a	fact	table	needs	to	contain	only	two	columns:	Order
Number	and	DateKey.	In	our	model,	we	moved	a	bit	further,	and	we	also	added
the	customer	key	so	that	we	could	slice	the	orders	by	customer,	too.	The	new	fact
table	can	be	obtained	through	the	following	DAX	code:
Click	here	to	view	code	image

OpenOrders	=

SELECTCOLUMNS	(

				GENERATE	(

								Orders,

								VAR	CurrentOrderDateKey	=	Orders[OrderDateKey]

								VAR	CurrentDeliverDateKey	=	Orders[DeliveryDateKey]

								RETURN

												FILTER	(

																ALLNOBLANKROW	('Date'[DateKey]),

																AND	(

																				'Date'[DateKey]	>=	CurrentOrderDateKey,

																				'Date'[DateKey]	<	CurrentDeliverDateKey

)

)

),

				"CustomerKey",	[CustomerKey],

				"Order	Number",	[Order	Number],

				"DateKey",	[DateKey]

)

	Note

Although	we	provide	the	DAX	code	for	the	table,	it	is	more	likely
that	you	can	produce	such	data	using	the	Query	Editor	or	a	SQL	view.
Because	DAX	is	more	concise	than	SQL	and	M,	we	prefer	to	publish
DAX	code,	but	please	do	not	assume	that	this	is	the	best	solution	in
terms	of	performance.	The	focus	of	this	book	is	on	the	data	model
itself,	not	on	performance	considerations	about	how	to	build	it.

You	can	see	the	new	data	model	in	Figure	7-20.

FIGURE	7-20	The	new	Open	Orders	table	only	contains	an	order	when	it	is
open.

In	this	new	data	model,	the	whole	logic	of	when	an	order	is	open	is	stored	in

the	table.	Because	of	this,	the	resulting	code	is	much	simpler.	In	fact,	the	Open
Orders	measure	is	the	following	single	line	of	DAX:
Click	here	to	view	code	image

Open	Orders	:=	DISTINCTCOUNT	(OpenOrders[Order

Number])

You	still	need	to	use	a	distinct	count	because	the	order	might	appear	multiple
times,	but	the	whole	logic	is	moved	into	the	table.	The	biggest	advantage	of	this
measure	is	that	it	only	uses	the	fast	engine	of	DAX,	and	it	makes	much	better	use
of	the	cache	system	of	the	engine.	The	OpenOrders	table	is	larger	than	the	original
fact	table,	but	with	simpler	data,	it	is	likely	to	be	faster.	In	this	case,	as	in	the	case
of	the	previous	model,	the	aggregation	at	the	month	level	produces	unwanted
results.	In	fact,	at	the	month	level,	the	previous	model	returned	orders	that	were
open	at	the	beginning	and	not	closed	until	the	end,	resulting	in	blank	values.	In	this
model,	on	the	other	hand,	the	result	at	the	month	level	is	the	total	number	of	orders
that	were	open	on	at	least	one	day	during	the	month,	as	shown	in	Figure	7-21.

FIGURE	7-21	This	new	model	returns,	at	the	month	level,	the	orders	that	were
open	sometime	during	the	month.

You	can	easily	change	this	to	the	average	number	of	open	orders	or	to	the	open
orders	at	the	end	of	the	month	by	using	the	following	two	formulas:
Click	here	to	view	code	image

Open	Orders	EOM	:=	CALCULATE	([Open	Orders],

LASTDATE	(('Date'[Date])))

Open	Orders	AVG	:=	AVERAGEX	(VALUES	(

'Date'[DateKey]),	[Open	Orders])

You	can	see	an	example	of	the	resulting	report	in	Figure	7-22.

FIGURE	7-22	This	report	shows	the	total,	average,	and	end-of-month	number	of
open	orders.

It	is	worth	noting	that	computing	open	orders	is	a	very	CPU-intensive	operation.
It	might	result	in	slow	reports	if	you	have	to	handle	several	million	orders.	In	such
a	case,	you	might	also	think	about	moving	more	computational	logic	into	the	table,
removing	it	from	the	DAX	code.	A	good	example	might	be	that	of	pre-aggregating
the	values	at	the	day	level	by	creating	a	fact	table	that	contains	the	date	and	the
number	of	open	orders.	In	performing	this	operation,	you	obtain	a	very	simple
(and	small)	fact	table	that	has	all	the	necessary	values	already	precomputed,	and
the	code	becomes	even	easier	to	author.
You	can	create	a	pre-aggregated	table	with	the	following	code:

Click	here	to	view	code	image

Aggregated	Open	Orders	=

FILTER	(

				ADDCOLUMNS	(

								DISTINCT	('Date'[DateKey]),

								"OpenOrders",	[Open	Orders]

),

				[Open	Orders]	>	0

)

The	resulting	table	is	tiny	because	it	has	the	same	granularity	as	the	date	table.
Thus,	it	contains	a	few	thousand	rows.	This	model	is	the	simplest	of	the	set	of
models	that	we	analyzed	for	this	scenario	because,	having	lost	the	order	number
and	the	customer	key,	the	table	has	a	single	relationship	with	the	date.	You	can	see
this	in	Figure	7-23.	(Again,	note	that	the	companion	file	contains	more	tables.	This
is	because	it	contains	the	whole	model,	as	will	be	explained	later	in	this	section.)

FIGURE	7-23	Pre-aggregating	open	orders	produces	an	amazingly	simple	data
model.

In	this	model,	the	number	of	open	orders	is	computed	in	the	simplest	way,
because	you	can	easily	aggregate	the	OpenOrders	column	by	SUM.
At	this	point,	the	careful	reader	might	object	that	we	went	several	steps	back	in

our	learning	of	data	modeling.	In	fact,	at	the	very	beginning	of	the	book,	we	said
that	working	with	a	single	table	where	everything	is	already	precomputed	is	a	way
to	limit	your	analytical	power.	This	is	because	if	a	value	is	not	present	in	the
table,	then	you	lose	the	capability	to	slice	at	a	deeper	level	or	to	compute	new
values.	Moreover,	in	Chapter	6,	“Using	snapshots,”	we	said	that	this	pre-
aggregation	in	snapshots	is	seldom	useful—and	now	we	are	snapshotting	open
orders	to	improve	the	performance	of	a	query!
To	some	extent,	these	criticisms	are	correct,	but	we	urge	you	to	think	more

about	this	model.	The	source	data	is	still	available.	What	we	did	this	time	does
not	reduce	the	analytical	power.	Instead,	seeking	top	performance,	we	built	a
snapshot	table	using	DAX	that	includes	most	of	the	computational	logic.	In	this
way,	heavy-to-compute	numbers	like	the	value	of	open	orders	can	be	gathered
from	the	pre-aggregated	table	while,	at	the	same	time,	more	lightweight	values

like	the	total	amount	sold	can	still	be	recovered	from	the	original	fact	table.	Thus,
we	are	not	losing	expressivity	in	the	model.	Instead,	we	are	increasing	it	by
adding	fact	tables	when	needed.	Figure	7-24	shows	you	the	whole	model	we	built
in	this	section.	Obviously,	you	will	never	build	all	these	tables	in	a	single	model.
The	intent	is	only	to	show	all	the	fact	tables	we	created	in	this	long	journey	to
analyze	how	open	orders	can	co-exist	and	provide	different	insights	in	your
model.

FIGURE	7-24	The	whole	model,	with	all	the	fact	tables	together,	is	pretty
complex.

Depending	on	the	size	of	your	data	model	and	the	kind	of	insights	you	need,	you
will	build	only	parts	of	this	whole	model.	As	we	have	said	multiple	times,	the
intent	is	to	show	you	different	ways	to	build	a	data	model	and	how	the	DAX	code
becomes	easier	or	harder	depending	on	how	well	the	model	fits	your	specific
needs.	Along	with	the	DAX	code,	flexibility	also	changes	in	each	approach.	As	a
data	modeler,	it	is	your	task	to	find	the	best	balance	and,	as	always,	to	be
prepared	to	change	the	model	if	the	analytical	needs	change.

Mixing	different	durations
When	handling	time	and	duration,	you	will	sometimes	have	several	tables	that
contain	information	that	is	valid	for	some	period	in	time.	For	example,	when
handling	employees,	you	might	have	two	tables.	The	first	table	contains	the	store

at	which	the	employee	is	working	and	an	indication	of	when	this	is	happening.	The
second	one	might	come	from	a	different	source	and	contain	the	gross	salary	of	the
employee.	The	start	and	end	date	of	the	two	tables	do	not	need	to	match.	The
employee’s	salary	could	change	on	one	date,	and	the	employee	could	switch	to	a
different	store	on	a	different	date.
If	you	face	such	a	scenario,	then	you	can	either	write	very	complex	DAX	code

to	solve	it	or	change	the	data	model	so	it	stores	the	correct	information	and	makes
the	code	much	easier	to	use.	Let	us	start	by	looking	at	the	data	model	shown	in
Figure	7-25.

FIGURE	7-25	This	data	model	shows	employees	with	different	store	assignments
and	different	salaries.

This	time,	the	model	is	somewhat	complex.	A	more	complete	description
follows:

	SalaryEmployee	This	contains	the	salary	of	an	employee,	with	the	start	and
end	date.	Thus,	each	salary	has	a	duration.
	StoreEmployee	This	contains	the	store	assignment	of	an	employee,	again
with	the	start	and	end	date.	Thus,	there	is	also	a	duration	in	this	case,	which
might	be	different	from	the	one	in	SalaryEmployee.
	Schedule	This	contains	the	days	that	the	employee	worked.

The	other	tables	(Store,	Employees,	and	Date)	are	simple	tables	containing

employee	names,	store	names,	and	a	standard	calendar	table.
The	data	model	contains	all	the	necessary	information	to	produce	a	report	that

shows,	over	time,	the	amount	paid	to	the	employee.	It	gives	the	user	the	ability	to
slice	by	store	or	by	employee.	With	that	said,	the	DAX	measures	that	you	must
write	are	very	complex	because,	given	a	date,	you	must	perform	the	following:

1.	Retrieve	the	salary	that	was	effective	on	the	date	by	analyzing	FromDate
and	ToDate	in	SalaryEmployee	of	the	given	employee.	If	the	selection
contains	multiple	employees,	then	you	will	need	to	perform	this	operation
for	each	employee	separately,	one	by	one.

2.	Retrieve	the	store	that	was	assigned	to	the	employee	at	the	given	time.
Let	us	start	with	a	simple	report	that	works	straight	out	of	the	model:	the	number

of	working	days	per	employee,	sliced	by	year.	It	works	because	the	relationships
are	set	so	you	can	slice	Schedule	based	on	both	the	calendar	year	and	the
employee	name.	You	can	author	a	simple	measure	like	the	following:
Click	here	to	view	code	image

WorkingDays	:=	COUNTROWS	(Schedule)

With	the	measure	in	place,	the	first	part	of	the	report	is	straightforward,	as	shown
in	Figure	7-26.

FIGURE	7-26	This	figure	shows	the	number	of	working	days,	sliced	by	year	and
employee.

First,	let	us	determine	the	amount	paid	to	Michelle,	who	is	employee	2,	in
2015.	The	SalaryEmployee	table	with	the	salaries	contains	the	values	shown	in
Figure	7-27.

FIGURE	7-27	Depending	on	the	date,	the	salary	changes	for	each	employee.

Michelle	has	two	different	salary	amounts	in	2015.	Thus,	the	formula	needs	to
iterate	on	a	day-by-day	basis	and	determine	what	the	current	daily	salary	was	for
each	day.	This	time,	you	cannot	rely	on	relationships	because	the	relationships
must	be	based	on	a	between	condition.	The	salary	has	a	range	defined	by
FromDate	and	ToDate	columns,	including	the	current	date.
The	code	is	not	exactly	easy	to	write,	as	you	can	see	in	the	following	measure

definition:
Click	here	to	view	code	image

SalaryPaid	=

SUMX	(

				'Schedule',

				VAR	SalaryRows	=

								FILTER	(

												SalaryEmployee,

												AND	(

																SalaryEmployee[EmployeeId]	=	Schedule[EmployeeId],

																AND	(

																				SalaryEmployee[FromDate]	<=	Schedule[Date],

																				SalaryEmployee[ToDate]	>	Schedule[Date]

)

)

)

				RETURN

								IF	(COUNTROWS	(SalaryRows)	=	1,	MAXX	(SalaryRows,	[DailySalary]))

)

The	complexity	comes	from	the	fact	that	you	must	move	the	filter	through	a
complex	FILTER	function	that	evaluates	the	between	condition.	Additionally,	you
must	make	sure	that	a	salary	exists	and	is	unique,	and	you	must	verify	your
findings	before	returning	them	as	the	result	of	the	formula.	The	formula	works,

provided	the	data	model	is	correct.	If,	for	any	reason,	the	dates	of	the	salary	table
overlap,	then	the	result	might	be	wrong.	You	would	need	further	logic	to	check	it
and	to	correct	the	possible	error.
With	this	code	in	place,	you	can	enhance	the	report,	displaying	the	salary	paid

in	each	period,	as	shown	in	Figure	7-28.

FIGURE	7-28	This	figure	shows	the	number	of	working	days,	sliced	by	year	and
employee.

The	scenario	becomes	more	complex	if	you	want	to	be	able	to	slice	by	store.	In
fact,	when	you	slice	by	store,	you	want	to	account	for	only	the	period	when	each
employee	was	working	for	the	given	store.	You	must	consider	the	filter	on	the
store	and	use	it	to	filter	only	the	rows	from	Schedule	when	the	employee	was
working	there.	Thus,	you	must	add	a	FILTER	around	the	Schedule	table	by	using
the	following	code:
Click	here	to	view	code	image

SalaryPaid	=

SUMX	(

				FILTER	(

								'Schedule',

								AND	(

												Schedule[Date]	>=	MIN	(StoreEmployee[FromDate]),

												Schedule[Date]	<=	MAX	(StoreEmployee[ToDate])

)

),

				VAR	SalaryRows	=

								FILTER	(

												SalaryEmployee,

												AND	(

																SalaryEmployee[EmployeeId]	=	Schedule[EmployeeId],

																AND	(

																				SalaryEmployee[FromDate]	<=	Schedule[Date],

																				SalaryEmployee[ToDate]	>	Schedule[Date]

)

)

)

				RETURN

								IF	(COUNTROWS	(SalaryRows)	=	1,	MAXX	(SalaryRows,	[DailySalary]))

)

This	formula	works	correctly,	as	shown	in	Figure	7-29,	but	it	is	extremely
complex	and	might	return	incorrect	results	if	it	is	not	used	in	the	proper	way.

FIGURE	7-29	The	last	version	of	SalaryPaid	returns	the	correct	numbers	when
sliced	by	store.

The	problem	with	this	model	is	that	the	relationship	between	stores,	salary,	and
employees	is	complex.	And	using	DAX	to	navigate	through	it	results	in	very
complex	code,	which	is	extremely	error-prone.	As	before,	the	solution	is	to	move
complexity	from	the	DAX	code	to	the	loading	process,	moving	toward	a	star
schema.
For	each	row	in	Schedule,	you	can	easily	compute	which	store	the	employee	is

working	at	and	what	the	daily	salary	for	that	day	of	work	is.	As	always,	a	correct
denormalization	removes	complexity	from	the	aggregation	formulas,	moving	it	to
the	fact	table	and	resulting	in	a	much	simpler	model	to	work	with.
You	should	create	two	calculated	columns	in	Schedule:	one	containing	the	daily

salary	and	another	containing	the	store	ID.	You	can	do	this	by	using	the	following
code:
Click	here	to	view	code	image

Schedule[DailySalary]	=

VAR	CurrentEmployeeId	=	Schedule[EmployeeId]

VAR	CurrentDate	=	Schedule[Date]

RETURN	

				CALCULATE	(

								VALUES	(SalaryEmployee[DailySalary]),

								SalaryEmployee[EmployeeId]	=	CurrentEmployeeId,

								SalaryEmployee[FromDate]	<=	CurrentDate,

								SalaryEmployee[ToDate]	>	CurrentDate

)

Schedule[StoreId]	=

VAR	CurrentEmployeeId	=	Schedule[EmployeeId]

VAR	CurrentDate	=	Schedule[Date]

RETURN	

				CALCULATE	(

								VALUES	(StoreEmployee[StoreId]),

								StoreEmployee[EmployeeId]	=	CurrentEmployeeId,

								StoreEmployee[FromDate]	<=	CurrentDate,

								StoreEmployee[ToDate]	>=	CurrentDate

)

When	the	two	columns	are	ready,	you	can	get	rid	of	most	of	the	relationships
with	the	SalaryEmployee	and	StoreEmployee	tables,	and	you	can	transform	the
data	model	into	the	simpler	star	schema	shown	in	Figure	7-30.

FIGURE	7-30	The	denormalized	model	is	a	star	schema.

	Note

We	intentionally	left	SalaryEmployee	and	StoreEmployee	visible	in
the	figure	of	the	model	to	highlight	the	fact	that	these	tables,	which
were	used	to	compute	the	calculated	columns,	have	no	relationships
with	the	remaining	ones.	In	a	production	model,	you	would	likely
hide	these	tables	to	prevent	users	from	even	seeing	them.	They	do	not
contain	useful	information	from	a	user	point	of	view.

With	the	new	model,	the	code	to	compute	the	salary	paid	is	as	easy	as	the
following	one:
Click	here	to	view	code	image

SalaryPaid	=	SUM	(Schedule[DailySalary])

Once	again,	you	have	seen	that	a	proper	denormalization	strategy	leads	to	the
best	data	model.	Maintaining	complex	relationships	in	the	model	does	not	help	the
code,	which	tends	to	be	very	complex	and	error-prone.	On	the	other	hand,
denormalizing	the	values	by	using	SQL	or	DAX	and	calculated	columns	splits	the

more	complex	scenario	into	smaller	ones.	Thus,	each	single	formula	is	much
simpler	and	easier	to	write	and	debug,	and	the	final	aggregation	formulas	become
extremely	easy	to	write	and	fast	to	execute.

Conclusions
This	chapter	deviated	from	the	standard	models	to	perform	a	deeper	analysis	of
scenarios	in	which	duration	is	the	primary	concept.	As	you	have	seen,	duration
forces	you	to	think	in	a	slightly	different	way,	redefining	the	very	concept	of	a	fact.
You	might	store	a	fact	along	with	its	duration,	but	in	doing	so,	you	will	need	to
reconsider	the	concept	of	time	because	a	single	fact	might	extend	its	effects	into
different	periods.	The	following	is	a	brief	overview	of	what	you	learned	in	this
chapter:

	Date	and	time	must	be	separate	columns.
	Aggregating	simple	intervals	is	easy.	You	should	only	try	to	reduce	the
cardinality	of	the	facts	to	the	best	one	that	satisfies	your	analytical	needs,
and	at	the	same	time,	reduce	the	cardinality	of	the	Time	column.
	When	you	store	duration	(or	intervals)	that	cross	the	time	dimension,	you
must	define	the	model	in	the	right	way.	There	are	many	options,	and	you	are
responsible	for	finding	the	best	one.	The	good	news	is	that	you	can	move
from	one	solution	to	another	by	simply	changing	the	data	model.	Then,	you
can	use	the	one	that	works	best	for	your	specific	scenario.
	Sometimes,	changing	the	way	you	think	about	time	might	help.	If	your	day
does	not	end	at	midnight,	you	can	model	it	the	way	you	want—for	example,
making	it	start	at	2:00	a.m.	You	are	not	a	slave	of	the	model.	Instead,	it	is	the
model	that	must	change	according	to	your	needs.
	Analysis	of	active	events	is	a	very	common	scenario	that	is	frequently	used
in	many	businesses.	You	learned	multiple	ways	of	solving	this	scenario.	The
more	tailored	the	model,	the	easier	the	DAX	code,	but	at	the	same	time,	the
more	complex	the	data-preparation	steps.
	When	you	have	multiple	tables	where	each	one	defines	its	own	set	of
durations,	trying	to	solve	the	problem	with	a	single	DAX	measure	makes	the
code	very	complex.	On	the	other	hand,	pre-computing	the	values	in	a
calculated	column	or	a	calculated	table	and	obtaining	the	right	degree	of
denormalization	will	lead	to	much	simpler	DAX	code,	which	you	can	trust
more.

The	main	takeaway	is	nearly	always	the	same:	If	the	DAX	code	becomes	too
complex,	then	it	is	a	very	good	indicator	that	you	might	need	to	work	on	the

model.	Although	it	is	true	that	the	model	should	not	be	built	for	a	single	report,	it
is	also	true	that	a	good	model	is	the	key	to	an	efficient	solution.

Chapter	8.	Many-to-many	relationships

Many-to-many	relationships	are	an	important	tool	in	the	data	analyst’s	toolbelt.
Often,	they	are	viewed	as	problematic	because	many-to-many	relationships	tend	to
make	the	model	more	complex	than	usual.	However,	we	suggest	you	start	thinking
about	many-to-many	relationships	as	an	opportunity	instead.	In	fact,	it’s	easy	to
handle	many-to-many	relationships.	You	only	need	to	learn	the	basic	technique	and
then	use	it	at	your	convenience.
As	you	will	learn	in	this	chapter,	many-to-many	relationships	are	extremely

powerful	and	let	you	build	great	data	models—even	if	they	hide	some	complexity
both	in	the	modeling	and	in	the	interpretation	of	the	results.	Moreover,	many-to-
many	relationships	are	present	in	nearly	every	data	model.	For	example,	simple
star	schemas	contain	many-to-many	relationships.	We	want	to	show	you	how	to
recognize	these	relationships	and—most	importantly—how	to	take	advantage	of
them	to	derive	good	insights	from	your	data.

Introducing	many-to-many	relationships
Let	us	start	by	introducing	many-to-many	relationships.	There	are	scenarios	where
the	relationship	between	two	entities	cannot	be	expressed	with	a	simple
relationship.	The	canonical	example	is	that	of	a	current	account.	The	bank	stores
transactions	related	to	the	current	account.	However,	the	current	account	can	be
owned	by	multiple	individuals	at	the	same	time.	Conversely,	one	individual	might
possess	multiple	current	accounts.	Thus,	you	cannot	store	the	customer	key	in	the
Accounts	table,	and	at	the	same	time,	you	cannot	store	the	account	key	in	the
Customers	table.	This	kind	of	relationship	is,	by	its	very	nature,	that	of	many
entities	related	to	many	other	entities,	and	it	cannot	be	expressed	with	a	single
column.

	Note

There	are	a	lot	of	other	scenarios	in	which	many-to-many
relationships	appear,	such	as	sales	agents	with	orders,	where	an
order	can	be	overseen	by	multiple	sales	agents.	Another	example
could	be	house	ownership,	where	an	individual	might	possess
multiple	houses,	and	the	same	house	might	be	owned	by	multiple
individuals.

The	canonical	way	of	modeling	a	many-to-many	relationship	is	to	use	a	bridge
table	that	contains	the	information	about	which	account	is	owned	by	which
individual.	Figure	8-1	shows	you	an	example	
of	a	model	with	many-to-many	relationships	based	on	the	current	account
scenario.

FIGURE	8-1	The	relationship	between	Customers	and	Accounts	is	through	a
bridge	table,	AccountsCustomers.

The	first	important	thing	to	note	about	many-to-many	relationships	is	that	they
are	a	different	kind	of	relationship	from	the	point	of	view	of	the	data	model,	but
when	implemented,	are	transformed	into	a	pair	of	standard	one-to-many
relationships.	Thus,	many-to-many	is	more	of	a	concept	than	a	physical
relationship.	We	speak	of,	think	about,	and	work	with	many-to-many	as	a	kind	of
relationship,	but	we	implement	it	as	a	pair	of	relationships.
Note	that	the	two	relationships	that	link	Customers	and	Accounts	with	the

bridge	table	are	in	opposite	directions.	In	fact,	both	relationships	start	from	the
bridge	table	and	reach	the	two	dimensions.	The	bridge	table	is	always	on	the
many	side.
Why	is	many-to-many	more	complex	than	other	kinds	of	relationships?	Here	are

several	reasons:
	Many-to-many	does	not	work	by	default	in	a	data	model	To	be	precise,	it
might	or	might	not	work,	depending	on	the	version	of	Tabular	you	are	using
and	its	settings.	In	Power	BI,	you	can	enable	bidirectional	filtering,	whereas

in	Microsoft	Excel	(up	to	and	including	Excel	2016),	you	will	need	to
author	some	DAX	code	to	make	formulas	traverse	many-to-many
relationships	the	right	way.
	Many-to-many	typically	generates	non-additive	calculations	This	makes
the	numbers	returned	when	using	many-to-many	slightly	more	difficult	to
understand,	and	makes	debugging	your	code	a	little	trickier.
	Performance	might	be	an	issue	Depending	on	the	size	of	the	many-to-many
filtering,	the	traversal	of	two	relationships	in	opposite	directions	might
become	expensive.	Thus,	when	working	with	many-to-many,	you	might	face
performance	issues	that	require	more	attention.

Let	us	analyze	all	these	points	in	more	detail.

Understanding	the	bidirectional	pattern
By	default,	a	filter	on	a	table	moves	from	the	one	side	to	the	many	side,	but	it	does
not	move	from	the	many	side	to	the	one	side.	Thus,	if	you	build	a	report	and	slice
by	customer,	the	filter	will	reach	the	bridge	table,	but	at	that	point,	the	filter
propagation	stops.	Consequently,	the	Accounts	table	will	not	receive	the	filter
coming	from	Customers,	as	shown	in	Figure	8-2.

FIGURE	8-2	The	filter	can	move	from	the	one	side	to	the	many	side,	but	not	from
the	many	side	to	the	one	side.

If	you	build	a	report	that	contains	the	customers	on	the	rows	and	a	simple	SUM
of	the	Amount	column	as	the	value,	the	same	number	is	repeated	for	all	the	rows.
This	is	because	the	filter	coming	from	Customers	is	not	working	against	Accounts,
and	from	there	to	the	transactions.	The	result	is	shown	in	Figure	8-3.

FIGURE	8-3	You	cannot	filter	the	amount	per	customer	because	of	the	many-to-
many	relationship.

You	can	solve	this	scenario	by	setting	the	propagation	of	the	filter	on	the
relationship	between	the	bridge	table	and	the	Accounts	table	as	bidirectional.	This
is	a	simple	setting	in	Power	BI,	where	bidirectional	filtering	is	available	as	part
of	the	modeling	tools.	In	Excel,	however,	you	must	use	DAX.
One	approach	is	to	activate	bidirectional	filtering	in	the	model,	in	which	case	it

will	be	active	for	all	the	calculations.	Alternatively,	you	can	use	the
CROSSFILTER	function	as	a	parameter	of	CALCULATE	to	activate	bidirectional
filtering	for	the	duration	of	CALCULATE.	You	can	see	this	in	the	following	code:
Click	here	to	view	code	image

SumOfAmount	:=

CALCULATE	(

				SUM	(Transactions[Amount]),

				CROSSFILTER	(AccountsCustomers[AccountKey],	Accounts[AccountKey],	BOTH)

)

The	result	is	the	same	in	both	cases.	The	filter	permits	propagation	from	the
many	side	to	the	one	side	of	the	relationship	that	links	the	accounts	with	the
bridge.	Thus,	the	Accounts	table	will	show	only	the	rows	that	belong	to	the
selected	customer.
In	Figure	8-4,	you	can	see	the	report	with	this	new	measure	side-by-side	with

the	previous	one	that	uses	a	simple	SUM.

FIGURE	8-4	SumOfAmount	computes	the	correct	value,	whereas	Amount	always
shows	the	grand	total.

There	is	a	difference	between	setting	the	relationship	as	bidirectional	and	using
the	DAX	code.	In	fact,	if	you	set	the	relationship	as	bidirectional,	then	any
measure	will	benefit	from	the	automatic	propagation	of	the	filter	from	the	many
side	to	the	one	side.	However,	if	you	rely	on	DAX	code,	then	you	need	to	author
all	the	measures	using	the	same	pattern	to	force	the	propagation.	If	you	have	lots	of
measures,	then	it	is	somewhat	annoying	to	have	to	use	the	three	lines	of	the
bidirectional	pattern	for	all	of	them.	On	the	other	hand,	setting	the	bidirectional
filtering	on	a	relationship	might	make	the	model	ambiguous.	For	this	reason,	you
cannot	always	set	the	relationship	as	bidirectional,	and	you	will	need	to	write
some	code.
With	that	said,	Excel	does	not	offer	you	bidirectional	relationships,	thus	you

have	no	choice.	In	Power	BI,	on	the	other	hand,	you	can	choose	the	technique	you
prefer.	In	our	experience,	bidirectional	relationships	are	more	convenient	and	tend
to	lower	the	number	of	errors	in	your	code.
You	can	obtain	a	similar	effect	to	that	of	CROSSFILTER	by	leveraging	table

expansion	in	DAX.	Explaining	table	expansion	in	detail	would	require	a	full
chapter	by	itself;	we	discuss	it	in	more	detail	in	our	book	The	Definitive	Guide	to
DAX,	where	this	topic	is	covered	in	detail.	Here,	we	only	want	to	note	that,	by
using	table	expansion,	you	can	write	the	previous	measure	in	the	following	way:
Click	here	to	view	code	image

SumOfAmount	:=

CALCULATE	(

				SUM	(Transactions[Amount]),

				AccountsCustomers

)

The	result	is	nearly	the	same	as	before.	You	still	obtain	the	filter	propagation,

but	this	time,	it	happens	through	table	expansion.	The	main	difference	between
using	bidirectional	filtering	and	table	expansion	is	that	the	pattern	with	table
expansion	always	applies	the	filter,	whereas	the	bidirectional	filtering	works	only
when	the	filter	is	active.	To	see	the	difference,	let	us	add	a	new	row	to	the
Transactions	table,	which	is	not	related	to	any	account.	This	row	has	5,000	USD
and,	not	being	related	to	any	account,	it	does	not	belong	to	any	customer.	Figure	8-
5	shows	you	the	result.

FIGURE	8-5	CROSSFILTER	and	table	expansion	lead	to	different	results	in	the
grand	total.

The	difference	between	the	two	measures	is	exactly	5,000	USD,	which	is	the
amount	that	is	not	related	to	any	customer.	It	is	reported	at	the	grand	total	in	the
CROSSFILTER	version,	but	it	is	not	reported	in	the	table	expansion	one.	When
you	use	the	CROSSFILTER	version	at	the	grand	total	when	no	filter	on	the
customer	is	active,	the	fact	table	shows	all	the	rows.	On	the	other	hand,	the	filter
is	always	activated	when	using	table	expansion,	showing	only	the	rows	in	the	fact
table	that	can	be	reached	through	one	of	the	customers.	Thus,	the	additional	row	is
hidden	and	does	not	contribute	to	the	grand	total.
As	it	often	happens	in	these	cases,	it	is	not	that	one	value	is	more	correct	than

the	other.	They	are	reporting	different	numbers	following	different	calculations.
You	only	need	to	be	aware	of	the	difference	so	you	can	use	the	correct	formula
depending	on	your	needs.	From	a	performance	point	of	view,	because	the	filter	is
not	applied	if	it	is	not	necessary,	you	can	expect	the	version	with	CROSSFILTER
to	be	slightly	faster	than	the	version	with	table	expansion.	CROSSFILTER	and
bidirectional	filtering,	on	the	other	hand,	report	the	same	numbers,	and	behave	the
same	way	in	terms	of	performance.

Understanding	non-additivity
The	second	important	point	about	many-to-many	relationships	is	that	typically,
measures	aggregated	through	a	many-to-many	relationship	are	non-additive.	This
is	not	an	error	in	the	model;	it	is	the	nature	of	many-to-many	that	makes	these

relationships	non-additive.	To	better	understand	this,	look	at	the	report	in	Figure
8-6	that	shows	both	the	Accounts	and	the	Customers	tables	on	the	same	matrix.

FIGURE	8-6	Many-to-many	relationships	generate	non-additive	calculations.

You	can	easily	see	that	the	column	totals	are	correct,	meaning	that	the	total	is
the	sum	of	all	the	rows	in	that	column.	The	row	totals,	however,	are	incorrect.
This	is	because	the	amount	of	the	account	is	shown	for	all	the	customers	who	own
that	account.	The	account	Mark-Paul,	for	example,	is	owned	by	Mark	and	Paul
together.	Individually,	they	have	1,000	USD	each,	but	when	you	consider	them
together,	the	total	is	still	1,000.
Non-additivity	is	not	a	problem.	It	is	the	correct	behavior	whenever	you	work

with	many-to-many	relationships.	However,	you	need	to	be	aware	of	non-
additivity	because	you	can	easily	be	fooled	if	you	do	not	take	it	into	account.	For
example,	you	might	iterate	over	the	customers,	compute	the	sum	of	the	amount,	and
then	aggregate	it	at	the	end,	which	obtains	a	result	that	is	different	from	the
calculation	done	for	the	grand	total.	This	is	demonstrated	in	the	report	in	Figure	8-
7,	which	shows	the	result	of	the	following	two	calculations:
Click	here	to	view	code	image

Interest	:=	[SumOfAmount]	*	0.01

Interest	SUMX	:=	SUMX	(Customers,	[SumOfAmount]	*

0.01)

FIGURE	8-7	The	grand	total	of	the	two	interest	calculations	is	different	because
of	many-to-many.

The	version	with	SUMX	forced	the	additivity	by	moving	the	sum	out	of	the
calculation.	In	doing	so,	it	computes	a	wrong	number.	When	handling	many-to-
many,	you	need	to	be	aware	of	its	nature	and	act	accordingly.

Cascading	many-to-many
As	you	saw	in	the	previous	section,	there	are	different	ways	to	handle	many-to-
many	relationships.	Once	you	learn	them,	these	kinds	of	relationships	can	be
easily	managed.	One	scenario	that	requires	slightly	more	attention	is	where	you
have	chains	of	many-to-many	relationships,	which	we	call	cascading	many-to-
many.
Let	us	start	with	an	example.	Using	our	previous	model	about	current	accounts,

suppose	we	now	want	to	store,	for	each	customer,	the	list	of	categories	to	which
the	customer	belongs.	Every	customer	might	belong	to	multiple	categories,	and	in
turn,	each	category	is	assigned	to	multiple	customers.	In	other	words,	there	is	a
many-to-many	relationship	between	customers	and	categories.
The	data	model	is	a	simple	variation	of	the	previous	one.	This	time	it	includes

two	bridge	tables:	one	between	Accounts	and	Customers,	and	another	between
Customers	and	Categories,	as	shown	in	Figure	8-8.

FIGURE	8-8	In	the	cascading	many-to-many	patterns,	there	are	two	chained
bridge	tables.

You	can	easily	make	this	model	work	by	setting	the	relationships	between
Accounts	and	AccountsCustomers	and	between	Customers	and
CustomersCategories	to	bidirectional.	By	doing	so,	the	model	becomes	fully
functional,	and	you	can	produce	reports	like	the	one	in	Figure	8-9,	which	shows
the	amount	available	sliced	by	category	and	customer.

FIGURE	8-9	Cascading	many-to-many	with	bidirectional	filtering	is	non-additive
over	rows	and	columns.

Obviously,	you	lose	additivity	over	any	dimension	that	is	browsed	through	a
many-to-many	relationship.	Thus,	as	you	can	easily	spot,	additivity	is	lost	on	both
rows	and	columns,	and	numbers	become	harder	to	interpret.
If,	instead	of	using	bidirectional	filtering,	you	use	the	CROSSFILTER	pattern,

then	you	need	to	set	cross-filtering	on	both	relationships	by	using	the	following
code:
Click	here	to	view	code	image

SumOfAmount	:=

CALCULATE	(

				SUM	(Transactions[Amount]),

				CROSSFILTER	(AccountsCustomers[AccountKey],	Accounts[AccountKey],	BOTH),

				CROSSFILTER	(CustomersCategories[CustomerKey],	Customers[CustomerKey],	BOTH)

)

If,	on	the	other	hand,	you	opted	for	the	table	expansion	pattern,	then	you	need	to
take	additional	care	when	authoring	your	code.	In	fact,	the	evaluation	of	the	table
filters	needs	to	be	done	in	the	right	order:	from	the	farthest	table	from	the	fact
table	to	the	nearest	one.	In	other	words,	first	you	need	to	move	the	filter	from
Categories	to	Customers,	and	only	later	move	the	filter	from	Customers	to
Accounts.	Failing	to	follow	the	correct	order	produces	wrong	results.	The	correct
pattern	is	as	follows:
Click	here	to	view	code	image

SumOfAmount	:=

CALCULATE	(

				SUM	(Transactions[Amount]),

				CALCULATETABLE	(AccountsCustomers,	CustomersCategories)

)

If	you	don’t	pay	attention	to	this	detail,	you	might	author	the	code	in	the
following	way:
Click	here	to	view	code	image

SumOfAmount	:=

CALCULATE	(

				SUM	(Transactions[Amount]),

				AccountsCustomers,

				CustomersCategories

)

However,	the	result	is	wrong	because	the	filter	propagation	has	not	been
executed	in	the	right	order,	as	shown	in	Figure	8-10.

FIGURE	8-10	If	you	do	not	follow	the	right	order,	table	expansion	produces	the
wrong	results.

This	is	one	of	the	reasons	we	prefer	to	declare	the	relationship	as	bidirectional
(if	possible),	so	that	your	code	will	work	without	the	need	to	pay	attention	to	these
details.	It	is	very	easy	to	write	the	wrong	code,	and	this,	added	to	the	complexity
of	non-additivity,	might	be	challenging	to	debug	and	check.
Before	leaving	the	topic	of	cascading	many-to-many,	it	is	worth	mentioning	that

the	model	with	cascading	many-to-many	can	be	created	most	of	the	time	with	a
single	bridge	table.	In	fact,	in	the	model	we	have	seen	so	far,	we	have	two
bridges:	one	between	Categories	and	Customers,	and	one	between	Customers	and
Accounts.	A	good	alternative	is	to	simplify	the	model	and	build	a	single	bridge
that	links	the	three	tables,	as	shown	in	Figure	8-11.
There	is	nothing	complex	in	a	bridge	table	that	links	three	dimensions,	and	the

data	model	looks	somewhat	easier	to	analyze—at	least	once	you	get	used	to	the
shape	of	data	models	with	many-to-many	relationships.	Moreover,	a	single
relationship	needs	to	be	set	as	bidirectional.	In	the	case	of	CROSSFILTER	or
table	expansion,	a	single	parameter	is	needed,	again	lowering	the	chances	of
errors	in	your	code.

FIGURE	8-11	A	single	bridge	table	can	link	multiple	tables	together.

	Note

This	model	that	links	three	tables	together	is	also	used	for
categorized	many-to-many,	which	is	a	many-to-many	relationship	that
has	another	table	used	to	filter	it.	For	example,	you	might	have
different	kinds	of	relationships	between	entities	(different	kinds	of
owners	of	current	accounts,	where	one	is	the	primary	account	and
others	are	secondary	accounts).	You	can	model	them	with	a	bridge
table	that	also	contains	a	link	to	the	category.	It	is	a	simple	model,	yet
it	is	extremely	powerful	and	effective.

Obviously,	you	will	need	to	build	such	a	super-bridge	table.	In	the	example,	we
used	a	simple	calculated	table	built	with	DAX,	but,	as	usual,	you	can	use	SQL	or
the	query	editor	to	obtain	a	similar	result.

Temporal	many-to-many
In	the	previous	section,	you	learned	that	you	can	model	many-to-many
relationships	even	in	cases	where	the	bridge	links	multiple	tables.	When	the

bridge	links	three	tables,	you	can	consider	each	of	the	three	tables	as	a	separate
filter,	and	at	the	end,	you	can	find	the	rows	in	the	fact	table	that	satisfy	all	the
conditions.	A	variation	of	this	scenario	happens	when	the	many-to-many
relationship	has	a	condition,	but	this	condition	cannot	be	expressed	with	a	simple
relationship.	Instead,	it	is	expressed	by	a	duration.	Such	a	relationship	is	known
as	a	temporal	many-to-many,	and	it	is	an	interesting	mix	between	duration
handling	(covered	in	Chapter	7,	“Analyzing	date	and	time	intervals”)	and	many-
to-many	(the	topic	of	this	chapter).
You	can	use	these	kinds	of	relationships	to	model,	for	example,	a	team	of

people	that	might	change	over	time.	An	individual	might	belong	to	different	teams
and	change	his	or	her	team	over	time,	so	the	relationship	between	individuals	and
teams	has	a	duration.	The	starting	model	is	shown	in	Figure	8-12.

FIGURE	8-12	A	single	bridge	table	can	link	multiple	tables	together.

As	you	can	see,	it	is	a	standard	many-to-many	model.
The	key	of	this	model	is	not	the	many-to-many,	but	the	fact	that	the	bridge	table

contains	two	dates	(FromDate	and	ToDate)	that	determine	in	which	period	the
individual	was	working	with	the	team.	In	fact,	if	you	use	this	model	as	it	is	and
slice	the	number	of	worked	hours	by	team	and	individual,	you	obtain	an	incorrect
result.	This	is	because	you	need	to	carefully	use	the	time	constraints	to	correctly
map	individuals	to	teams	in	any	given	period.	A	simple	filter	by	individual	will
not	work.	To	better	understand	what	happens,	see	Figure	8-13,	which	depicts	the
bridge	table	and	highlights	the	rows	pertinent	to	Catherine.

FIGURE	8-13	Filtering	the	bridge	by	Catherine,	you	obtain	all	the	teams	for
which	she	worked	at	any	time.

If	you	filter	by	name,	you	obtain	all	the	teams	for	which	Catherine	worked.	But
when	you	look	at	2015,	for	example,	you	want	to	obtain	only	the	first	two	rows.
Moreover,	because	Catherine	worked	for	two	different	teams	in	2015,	you	want	to
account	January	to	the	Developers	team,	and	February	through	December	to	the
Sales	team.
Temporal	many-to-many	relationships	are	complex	models	to	solve,	and

usually,	they	are	very	hard	to	optimize.	In	fact,	it	is	extremely	easy	to	fall	into	the
many	traps	they	hide.	You	might	be	tempted	to	simply	apply	a	temporal	filter	to	the
many-to-many	to	show	only	the	rows	that	are	considered	valid	during	the	period
selected.	But	imagine	you	restrict	the	rows	to	only	Catherine	in	the	year	2015.	You
will	still	see	two	different	teams	(Developers	and	Sales).
To	solve	the	scenario,	you	need	to	perform	the	following	steps	in	the	right	way:
1.	Determine	the	periods	during	which	each	individual	worked	for	a	given
team.

2.	Move	the	filter	on	the	dates	to	the	fact	table,	taking	care	to	intersect	it	with
any	other	filter	that	is	already	applied	on	the	fact	table.

These	two	operations	need	to	be	executed	inside	an	iteration	at	the	individual
level	because	different	individuals	might	have	different	periods	to	take	into
account.	You	can	do	this	with	the	following	code:
Click	here	to	view	code	image

HoursWorked	:=

SUMX	(

				ADDCOLUMNS	(

								SUMMARIZE	(

												IndividualsTeams,

												Individuals[IndividualKey],

												IndividualsTeams[FromDate],

												IndividualsTeams[ToDate]

),

								"FirstDate",	[FromDate],

								"LastDate",	IF	(ISBLANK	([ToDate]),	MAX	(WorkingHours[Date]),	[ToDate])

),

				CALCULATE	(

								SUM	(WorkingHours[Hours]),

								DATESBETWEEN	('Date'[Date],	[FirstDate],	[LastDate]),

								VALUES	('Date'[Date])

)

)

In	this	scenario,	you	have	no	way	of	modeling	the	many-to-many	relationship	in
the	data	model	because	the	duration	of	the	relationship	forces	you	to	rely	on	DAX
code	to	transfer	the	filter	from	the	bridge	table	to	the	fact	table.	The	code	is	not
simple,	and	it	requires	you	to	have	a	deep	understanding	of	how	filter	context
propagates	through	relationships.	Moreover,	because	of	its	complexity,	this	code
is	sub-optimal.	Still,	it	works	just	fine,	and	you	can	use	it	to	produce	reports	like
the	one	shown	in	Figure	8-14,	which	demonstrates	how	the	filter	on	the	periods	is
correctly	moved	to	the	fact	table.

FIGURE	8-14	The	report	shows	the	number	of	hours	worked	by	individuals	on
different	teams.

As	you	have	seen,	the	code	is	very	complex.	Moreover,	it	is	worth	noting	that	in
this	specific	model,	many-to-many	is	probably	the	wrong	tool.	We	deliberately
chose	a	model	where	many-to-many	seemed	like	the	right	choice,	but	after	looking
closer	at	the	model,	it	becomes	clear	that	there	are	better	choices.	In	fact,	even	if
it	is	true	that	over	time	an	individual	might	belong	to	different	teams,	on	a	given
day	that	person	should	belong	to	a	single	team.	If	this	condition	is	met,	then	the
correct	way	of	modeling	this	scenario	is	to	consider	the	team	as	a	dimension
unlinked	from	the	individuals,	and	to	use	the	fact	table	to	store	the	relationship
between	teams	and	individuals.	In	the	model	we	are	using	as	an	example,	this
condition	is	not	met,	as	shown	in	Figure	8-15,	which	reveals	that	Paul,	during
August	and	September	2015,	was	on	two	different	teams.

FIGURE	8-15	In	August	and	September	2015,	Paul	is	working	for	two	different
teams.

We	are	going	to	use	this	scenario	to	introduce	the	next	topic,	which	is	the
reallocation	factors	in	the	many-to-many.

Reallocating	factors	and	percentages
As	the	report	in	Figure	8-15	showed,	it	looks	like	Paul	accounted	for	62	hours	in
August	for	both	the	Sales	and	the	Testers	teams.	These	figures	are	clearly	wrong.
Paul	cannot	have	worked	for	both	teams	at	the	same	time.	In	this	scenario—that	is,
when	the	many-to-many	relationship	generates	overlaps—it	is	usually	a	good
practice	to	store	in	the	relationship	a	correction	factor	that	indicates	how	much	of
Paul’s	total	time	is	to	be	allocated	to	each	team.	Let	us	see	the	data	in	more	detail
with	the	aid	of	Figure	8-16.

FIGURE	8-16	In	August	and	September	2015,	Paul	is	working	for	Testers	and
Sales.

The	data	in	this	model	does	not	look	correct.	To	avoid	assigning	100	percent	of
Paul’s	time	to	both	teams,	you	can	add	a	value	to	the	bridge	table	that	represents
the	percentage	of	time	that	needs	to	be	assigned	to	each	team.	This	requires
splitting	and	storing	the	periods	in	multiple	rows,	as	shown	in	Figure	8-17.

FIGURE	8-17	By	duplicating	some	rows,	you	can	avoid	overlaps,	and	you	can
add	percentages	that	allocate	the	hours.

Now	Paul’s	overlapping	periods	are	divided	into	non-overlapping	periods.	In
addition,	a	percentage	was	added	to	indicate	that	60	percent	of	the	total	time
should	be	allocated	to	the	Testers	team	and	40	percent	of	the	total	time	should	be
allocated	to	the	Sales	team.
The	final	step	is	to	take	these	numbers	into	account.	To	do	that,	it	is	enough	to

modify	the	code	of	the	measure	so	it	uses	the	percentage	in	the	formula.	The	final
code	is	as	follows:
Click	here	to	view	code	image

HoursWorked	:=

SUMX	(

				ADDCOLUMNS	(

								SUMMARIZE	(

												IndividualsTeams,

												Individuals[IndividualKey],

												IndividualsTeams[FromDate],

												IndividualsTeams[ToDate],

												IndividualsTeams[Perc]

),

								"FirstDate",	[FromDate],

								"LastDate",	IF	(ISBLANK	([ToDate]),	MAX	(WorkingHours[Date]),	[ToDate])

),

				CALCULATE	(

								SUM	(WorkingHours[Hours]),

								DATESBETWEEN	('Date'[Date],	[FirstDate],	[LastDate]),

								VALUES	('Date'[Date])

)	*	IndividualsTeams[Perc]

)

As	you	can	see,	we	added	the	Perc	column	to	SUMMARIZE.	We	then	used	it	as
a	multiplier	in	the	final	step	of	the	formula	to	correctly	allocate	the	percentage	of
hours	to	the	team.	Needless	to	say,	this	operation	made	the	code	even	harder	than
before.
In	Figure	8-18,	you	can	see	that	in	August	and	September,	Paul’s	hours	are

correctly	split	between	the	two	teams	he	worked	with.

FIGURE	8-18	The	report	shows	correctly	that	Paul	was	in	two	teams	in	August
and	September,	and	splits	hours	between	them.

Nevertheless,	in	doing	this	operation,	we	moved	to	a	slightly	different	data
model	that	transformed	the	overlapping	periods	into	percentages.	We	had	to	do
this	because	we	did	not	want	to	obtain	a	non-additive	measure.	In	fact,	while	it	is
true	that	many-to-many	relationships	are	non-additive,	it	is	also	true	that,	in	this
specific	case,	we	wanted	to	guarantee	additivity	because	of	the	data	we	are
representing.
From	the	conceptual	point	of	view,	this	important	step	helps	us	introduce	the

next	step	in	the	optimization	of	the	model:	the	materialization	of	many-to-many
relationships.

Materializing	many-to-many
As	you	saw	in	the	previous	examples,	many-to-many	relationships	could	have

temporal	data	(or,	in	general,	with	a	complex	filter),	percentages,	and	allocation
factors.	That	tends	to	generate	very	complex	DAX	code.	In	the	DAX	world,
complex	typically	means	slow.	In	fact,	the	previous	expressions	are	fine	if	you
need	to	handle	a	small	volume	of	data,	but	for	larger	datasets	or	for	heavy
environments,	they	are	too	slow.	The	next	section	covers	some	performance
considerations	with	many-to-many	relationships.	In	this	section,	however,	we
want	to	show	you	how	you	can	get	rid	of	many-to-many	relationships	if	you	are
seeking	better	performance,	and	as	usual,	easier	DAX.
As	we	anticipated,	most	of	the	time,	you	can	remove	many-to-many

relationships	from	the	model	by	using	the	fact	table	to	store	the	relationship
between	the	two	dimensions.	In	fact,	in	our	example,	we	have	two	different
dimensions:	Teams	and	Individuals.	They	are	linked	by	a	bridge	table,	which	we
need	to	traverse	and	filter	every	time	we	want	to	slice	by	team.	A	more	efficient
solution	would	be	to	store	the	team	key	straight	in	the	fact	table	by	materializing
the	many-to-many	relationship	in	the	fact	table.
Materializing	the	many-to-many	relationship	requires	that	you	denormalize	the

columns	from	the	bridge	table	to	the	fact	table,	and	at	the	same	time	increase	the
number	of	rows	in	the	fact	table.	In	the	case	of	Paul’s	hours	that	need	to	be
assigned	to	two	different	teams	during	August	and	September,	you	will	need	to
duplicate	the	rows,	adding	one	row	for	each	team.	The	final	model	will	be	a
perfect	star	schema,	as	shown	in	Figure	8-19.

FIGURE	8-19	Once	you	remove	the	many-to-many	relationship,	you	obtain	a
normal	star	schema.

Increasing	the	row	count	requires	some	steps	of	ETL.	This	is	usually	done

through	a	SQL	view,	or	by	using	the	query	editor.	Performing	the	same	operation
with	DAX	proves	to	be	very	complex,	since	DAX	is	not	intended	as	a	data
manipulation	language,	but	it	is	primarily	a	query	language.
The	good	news	is	that,	once	the	many-to-many	is	materialized,	the	formula

becomes	extremely	simple	to	author	because	you	only	need	to	compute	the	sum	of
the	hours	multiplied	by	the	percentage.	As	an	additional	option,	you	can	also
compute	the	hours	multiplied	by	the	percentage	during	extract,	transform,	load
(ETL)	to	avoid	the	multiplication	at	query	time.

Using	the	fact	tables	as	a	bridge
One	curious	aspect	of	many-to-many	relationships	is	that	they	often	appear	where
you	don’t	expect	them.	In	fact,	the	main	characteristic	of	many-to-many
relationships	is	the	bridge	table,	which	is	a	table	with	two	relationships	in	the
opposite	direction	that	link	two	dimensions.	This	schema	is	much	more	frequent
than	you	might	expect.	In	fact,	it	is	present	in	any	star	schema.	In	Figure	8-20,	for
example,	you	can	see	one	of	the	star	schemas	we	have	used	multiple	times	in	the
demos	for	this	book.

FIGURE	8-20	This	figure	shows	a	typical	many-to-many	relationship	with	the
number	of	rows	in	each	table.

At	first	sight,	it	looks	like	there	is	no	many-to-many	relationship	in	this	model.
However,	if	you	carefully	consider	the	nature	of	many-to-many	relationships,	you
can	see	that	the	Sales	table	has	multiple	relationships	in	opposite	directions,
linking	different	dimensions.	It	has	the	same	structure	as	a	bridge	table.

For	all	effects,	a	fact	table	can	be	considered	as	a	bridge	between	any	two
dimensions.	We	have	used	this	concept	multiple	times	in	this	book,	even	if	we	did
not	clearly	state	that	we	were	traversing	a	many-to-many	relationship.	However,
as	an	example,	if	you	think	about	counting	the	number	of	customers	who	bought	a
given	product,	you	can	do	the	following:

	Enable	bidirectional	filtering	on	the	relationship	between	Sales	and
Customer.
	Use	CROSSFILTER	to	enable	the	bidirectional	relationship	on	demand.
	Use	the	bidirectional	pattern	with	CALCULATE	(COUNTROWS	(
Customer),	Sales).

Any	one	of	these	three	DAX	patterns	will	provide	the	correct	answer,	which	is
that	you	filter	a	set	of	products,	and	you	can	count	and/or	list	the	customers	who
bought	some	of	those	articles.	You	might	have	recognized	in	the	three	patterns	the
same	technique	we	have	used	to	solve	the	many-to-many	scenario.
In	your	data-modeling	career,	you	will	learn	how	to	recognize	these	patterns	in

different	models	and	start	using	the	right	technique.	Many-to-many	is	a	powerful
modeling	tool,	and	as	you	have	seen	in	this	short	section,	it	appears	in	many
different	scenarios.

Performance	considerations
Earlier,	we	discussed	different	ways	to	model	complex	many-to-many
relationships.	We	concluded	that	if	you	need	to	perform	complex	filtering	or
multiplication	by	some	allocation	factors,	then	the	best	option,	from	both	a
performance	and	a	complexity	point	of	view,	is	to	materialize	the	many-to-many
relationship	in	the	fact	table.
Unfortunately,	there	is	not	enough	space	in	this	book	for	a	detailed	analysis	of

the	performance	of	many-to-many	relationships.	Still,	we	want	to	share	with	you
some	basic	considerations	to	give	you	a	rough	idea	of	the	speed	you	might	expect
from	a	model	containing	many-to-many	relationships.
Whenever	you	work	with	a	many-to-many	model,	you	have	three	kinds	of

tables:	dimensions,	fact	tables,	and	bridge	tables.	To	compute	values	through	a
many-to-many	relationship,	the	engine	needs	to	scan	the	bridge	table	using	the
dimension	as	a	filter,	and	then,	with	the	resulting	rows,	perform	a	scan	of	the	fact
table.	Scanning	the	fact	table	might	take	some	time,	but	it	is	not	different	from
scanning	it	to	compute	a	value	when	the	dimension	is	directly	linked	to	it.	Thus,
the	additional	effort	required	by	the	many-to-many	relationship	does	not	depend
on	the	size	of	the	fact	table.	A	larger	fact	table	slows	down	all	the	calculations;

many-to-many	relationships	are	not	different	from	other	relationships.
The	size	of	the	dimension	is	typically	not	an	issue	unless	it	contains	more	than

1,000,000	rows,	which	is	very	unlikely	for	self-service	BI	solutions.	Moreover,
as	already	happened	with	the	fact	table,	the	engine	needs	to	scan	the	dimension
anyway,	even	if	it	is	directly	linked	to	the	fact	table.	Thus,	the	second	point	is	that
the	performance	of	many-to-many	relationships	does	not	depend	on	the	size	of	the
dimension	linked	to	the	table.
The	last	table	to	analyze	is	the	bridge.	The	size	of	the	bridge,	unlike	the	other

tables,	matters.	To	be	precise,	it	is	not	the	actual	size	of	the	bridge	table	that
matters,	but	the	number	of	rows	that	are	used	to	filter	the	fact	tables.	Let	us	use
some	extreme	examples	to	clarify	things.	Suppose	you	have	a	dimension	with
1,000	rows,	a	bridge	with	100,000	rows,	and	10,000	rows	in	the	second
dimension,	as	shown	in	Figure	8-21.

FIGURE	8-21	This	figure	shows	a	typical	many-to-many	relationship	with	the
number	of	rows	in	each	table.

As	mentioned,	the	size	of	the	fact	table	is	not	useful.	It	has	100,000,000	rows,
but	this	should	not	be	intimidating.	What	changes	the	performance	is	the	selectivity
of	the	bridge	table	over	the	Accounts	table.	If	you	are	filtering	10	customers,	the
bridge	filters	only	around	100	accounts.	Thus,	you	have	a	fairly	balanced
distribution,	and	performance	will	be	very	good.	Figure	8-22	shows	this	scenario.

FIGURE	8-22	If	the	number	of	accounts	filtered	is	small,	performance	is	very
good.

On	the	other	hand,	if	the	filtering	of	the	bridge	is	much	less	selective,	then
performance	will	be	worse	depending	on	the	number	of	resulting	accounts.	Figure
8-23	shows	you	an	example	where	filtering	10	customers	results	in	10,000
accounts.	In	that	case,	performance	will	start	to	suffer.

FIGURE	8-23	If	the	number	of	accounts	filtered	is	large,	performance	starts	to
suffer.

In	short,	the	higher	the	selectivity	of	the	bridge	table,	the	better	the	performance.
Typically,	because	bridge	tables	tend	to	have	a	normal	selectivity,	this	translates
to	a	simpler	statement:	The	larger	the	bridge	table,	the	worse	the	performance.	It
is	somewhat	incorrect	to	state	it	this	way,	but	we	also	understand	that	it	is	much
easier	to	remember	and	apply,	and	to	some	extent,	it	gives	you	the	correct	figures.
In	our	experience,	bridge	tables	up	to	1,000,000	rows	work	just	fine,	but	larger

bridge	tables	require	much	more	attention	and	some	effort	in	trying	to	reduce	their
size.	The	point	to	remember	here	is	to	not	spend	time	reducing	the	size	of	the	fact
table.	Instead,	try	to	work	on	the	bridge	table	and	reduce	its	size.	This	will	guide
you	in	the	right	direction	in	optimizing	the	many-to-many	behavior.

Conclusions
You	must	learn	how	to	take	advantage	of	many-to-many	relationships	because	they
provide	incredible	power	of	analysis.	That	said,	learning	how	to	use	this	type	of
relationship	means	understanding	the	limitations	and	complexity,	both	in	terms	of
DAX	code	and	ease	of	use.	Review	the	following	highlights:

	You	can	manage	many-to-many	relationships	using	three	main	patterns:
bidirectional	relationships,	CROSSFILTER,	or	table	expansion.	The	choice
depends	on	the	version	of	DAX	you	are	using	and	the	results	you	want	to
obtain.
	Basic	many-to-many	does	not	require	much	effort.	Once	you	understand	its
non-additivity	nature	and	how	to	set	the	relationships	the	correct	way,	it
works	just	fine.
	Cascading	many-to-many	relationships	and	filtered	many-to-many
relationships	are	a	bit	more	complex	in	their	handling,	especially	if	you	rely
on	table	expansion.	In	that	case,	flattening	them	all	in	a	single	bridge	might
help	you	write	easier	code.
	Temporal	many-to-many	and	many-to-many	with	reallocation	factors	are
complex	by	their	nature.	They	are	powerful	but	hard	to	manage.
	If	you	need	to	handle	very	complex	many-to-many	relationships,	your	best
choice	might	be	to	remove	the	many-to-many	altogether.	By	materializing	the
relationship	in	the	fact	table,	you	can	nearly	always	get	rid	of	many-to-many
relationships,	even	if	this	requires	you	to	carefully	study	the	new	fact	table,
increase	its	number	of	rows,	and	probably	revise	some	of	the	code	you
wrote	earlier.
	When	thinking	about	performance,	reducing	the	size	of	the	bridge	is	your
first	goal.	You	reduce	the	bridge	to	increase	its	selectivity.	If	your	bridge	is
large,	but	highly	selective	when	you	use	it,	then	you	are	already	on	the	fast
track	of	DAX.

Chapter	9.	Working	with	different	granularity

We	talked	a	lot	about	granularity	in	previous	chapters,	and	you	have	seen	how
important	it	is	to	always	have	the	data	at	the	right	granularity.	But	sometimes,	data
is	stored	in	different	fact	tables	at	a	different	granularity,	and	the	data	model
cannot	be	changed.	For	each	table,	the	granularity	is	right.	In	that	case,	it	might	be
painful	to	build	calculations	that	use	both	tables.
In	this	chapter,	we	will	perform	a	deeper	analysis	of	how	to	handle	different

granularities,	looking	at	different	modeling	options	and	a	different	kind	of	DAX
code.	All	these	models	have	one	thing	in	common:	Granularity	cannot	be	fixed	by
changing	the	model.	In	most	cases,	the	issue	comes	from	having	different	levels	of
granularity	in	different	tables,	but	for	each	table,	the	granularity	is	the	right	one.
You	start	having	problems	when	you	mix	both	tables	in	the	same	report.

Introduction	to	granularity
Granularity	is	the	level	of	detail	at	which	you	store	information.	In	a	typical	star
schema,	granularity	is	defined	by	the	dimensions—not	by	the	fact	table.	The	more
dimensions,	the	higher	the	granularity.	Likewise,	the	more	detailed	the	dimensions,
the	higher	the	granularity.	Look,	for	example,	at	the	model	shown	in	Figure	9-1.

FIGURE	9-1	This	is	a	simple	snowflake	model	with	four	dimensions	and	one	fact
table.

In	this	model,	the	granularity	is	defined	by	the	presence	of	Date,	Store,
Customer,	and	Product.	Product	Subcategory	and	Product	Category,	being
snowflaked	dimensions,	do	not	contribute	to	the	granularity.	The	Sales	table	needs
to	contain	at	most	one	row	for	each	unique	combination	of	the	values	in	the
dimension.	If	two	rows	exist	in	Sales	with	the	same	combination	of	dimensional
keys,	they	can	be	merged	into	a	single	row	with	no	loss	in	expressivity.	For
example,	look	at	the	content	of	the	Sales	table,	which	is	shown	in	Figure	9-2.
Notice	that	there	are	multiple	rows	containing	the	very	same	set	of	keys	and
values.

FIGURE	9-2	The	first	eight	rows	of	this	table	are	totally	identical.

There	is	no	way	to	differentiate	between	these	rows	in	a	report.	If	you	slice	by
any	dimension,	their	values	will	always	be	aggregated	together.	You	can	compress
the	first	eight	rows	in	a	single	line	that	contains	8	for	the	quantity	and	with	all	the
remaining	columns	identical.	It	looks	strange	at	first,	but	it	is	correct.	The
expressivity	of	the	model	does	not	change	in	any	way	if	you	reduce	the	number	of
rows	to	the	most	detailed	granularity	needed.	Having	more	rows	only	results	in	a
waste	of	space.
Obviously,	if	you	add	a	dimension,	things	change.	For	example,	it	might	be	the

case	that	these	eight	rows	had	a	difference	in	the	promotional	discount	applied.	If
you	add	a	new	Promotion	dimension,	then	you	change	the	granularity,	increasing	it.
Snowflaked	dimensions	do	not	count	when	defining	the	granularity	because	they

are	at	a	lower	level	of	detail	than	the	dimension	to	which	they	are	linked.	In	fact,

Product	is	on	the	many	side	of	the	relationship	between	Product	and	Product
Subcategory.	Thus,	there	are	many	products	with	the	same	category.	If	you	add	the
Product	Subcategory	key	to	the	fact	table,	you	are	not	going	to	change	its	size,	in
terms	of	rows.
Whenever	you	build	a	new	model,	always	take	these	considerations	into

account.	After	you	define	the	dimensions,	try	to	reduce	the	size	of	the	fact	table	to
its	natural	granularity,	by	performing	grouping	and	pre-aggregation	during	the
extraction	of	the	data.	The	result	is	a	smaller	model,	or	more	precisely,	a	model	of
optimal	size:	Neither	too	small	nor	too	large,	simply	perfect.
Notice	that	the	fact	table	discussed	in	this	section	includes	no	detailed

information	about	the	order	number.	If	you	put	the	order	number	in	the	table,	then
many	rows	will	become	different,	even	if	they	share	the	same	set	of	dimensions.
For	example,	two	identical	orders	for	the	same	customer	could	be	grouped	if	you
do	not	take	into	account	the	order	number.	However,	as	soon	as	you	want	the	order
number,	they	can	no	longer	be	grouped	together.	Thus,	the	presence	of	detailed
information	in	the	fact	table	changes	the	granularity	of	the	table	itself.	You	might
have	good	reasons	to	store	this	detailed	information	in	the	fact	table.	It	is	only
important	to	understand	that	its	presence	has	a	high	cost	in	terms	of	size	and
memory	use.	Store	these	fields	only	if	they	are	really	needed	for	your	reports.

Relationships	at	different	granularity
Now	that	we	have	set	the	common	terminology	about	granularity,	let	us	see
examples	where	granularity	is	different	between	fact	tables.	A	great	example	is	a
budgeting	scenario.

Analyzing	budget	data
When	you	need	to	analyze	a	budget,	you	are	likely	to	check	the	difference	between
the	actual	sales	(either	in	the	past	or	in	the	current	year)	and	the	forecasted,
budgeted	figures.	This	leads	to	interesting	key	performance	indicators	(KPIs)	and
reports.	To	do	this,	however,	you	must	face	the	problem	of	granularity.	In	fact,	it	is
very	unlikely	that	you	have	forecasted	sales	in	the	budget	for	each	product	and
day.	However,	you	have	sales	at	the	product	and	day	level.	Let	us	explore	this
with	an	example.	Figure	9-3	shows	a	data	model	with	a	standard	star	schema	for
Sales	and	a	Budget	table,	which	contain	the	figures	for	the	next	year.

FIGURE	9-3	This	data	model	contains	sales	and	budget	data	in	the	same
structure.

The	budget	information	is	present	at	the	country/region	and	brand	level.
Obviously,	it	does	not	make	sense	to	provide	a	day-by-day	budget.	When	you
forecast	numbers,	you	do	so	at	a	higher	level.	The	same	applies	at	the	product
level.	You	cannot	forecast	the	sales	of	individual	products	(unless	you	have	very
few	sales).	In	the	example	shown	in	Figure	9-3	the	budgeting	manager	focused	on
only	two	attributes:	the	country/region	and	the	brand.
If	you	try	to	build	a	report	that	shows	Sales	and	Budget	in	the	same	structure,

you	will	find	yourself	in	trouble	because	of	the	missing	relationships.	As	you	can
see	in	Figure	9-4,	you	can	slice	sales	in	2009	by	brand	using	the	product	brand
(that	is,	the	Brand	column	in	the	Product	table),	but	you	cannot	slice	budget
information	using	the	same	column,	because	there	are	no	relationships	between
Product	and	Budget.

FIGURE	9-4	The	product	brand	does	not	slice	the	Budget	table	because	there	are
no	relationships	between	Product	and	Budget.

You	might	remember	that	we	dealt	with	a	similar	scenario	in	Chapter	1,
“Introduction	to	data	modeling.”	At	that	time,	you	did	not	have	the	knowledge	you
have	now,	so	we	can	now	discuss	in	more	detail	the	different	options	available	to
solve	it.
It	is	important	to	note	that	the	granularity	issue	is	not	a	mistake	in	the	model.

The	budget	exists	at	its	own	granularity,	whereas	sales	are	present	at	a	different
one.	Both	tables	are	modeled	the	right	way.	However,	it	is	not	so	easy	to	slice	by
both	of	them.
The	first	option	we	want	to	analyze	is	the	easiest	way	of	making	the	budget

model	a	working	one:	reducing	the	granularity	of	both	tables	to	match	by	removing
details	in	Sales	that	are	not	present	in	Budget.	You	can	easily	do	this	by	modifying
the	queries	that	load	Sales	and	removing	tables	referenced	by	Sales	that	are	at	a
level	of	detail	not	supported	by	the	budget.	The	resulting	model	is	shown	in	Figure
9-5.

FIGURE	9-5	By	simplifying	both	tables,	you	can	obtain	a	simple	star	schema.

To	obtain	the	simplified	model,	we	reduced	the	granularity	of	Sales	by
removing	all	the	details.	We	had	to	remove	the	date	references,	the	product	key
(replaced	by	the	brand),	and	the	StoreKey	(replaced	by	the	CountryRegion).	We
precomputed	the	amount	of	sales	while	grouping.	All	the	dimensions	are	gone,
replaced	by	two	simple	dimensions	containing	the	brands	and	the	country/region.
The	resulting	model	is	straightforward	and,	as	shown	in	Figure	9-6,	it	works	just
fine.	You	can	slice	Sales	and	Budget	by	the	brand,	obtaining	meaningful	figures.

FIGURE	9-6	Because	the	model	is	based	on	a	star	schema,	it	now	produces
meaningful	numbers.

The	problem	with	this	solution	is	that	to	make	it	work,	we	had	to	pay	a	huge
price	in	terms	of	analytical	power.	That	is,	we	had	to	remove	all	the	detailed
information	about	sales.	On	the	date,	for	example,	we	had	to	restrict	data	to	only
2009.	In	addition,	we	are	no	longer	able	to	slice	the	sales	by	month	and	quarter,	or
by	product	color.	Thus,	even	if	the	solution	works	from	a	technical	point	of	view,
it	is	far	from	being	correct.	What	we	would	like	to	achieve	is	a	way	to	slice	the
budget	without	losing	any	analytical	capability	in	Sales.

Using	DAX	code	to	move	filters
The	next	technique	we	want	to	analyze	to	solve	the	scenario	is	based	on	DAX.
The	problem	with	the	data	model	in	Figure	9-3	is	that	you	can	filter	by	brand	using
the	Brand	column	in	the	Product	table,	but	because	there	are	no	relationships
between	Product	and	Budget,	the	filter	will	not	be	able	to	reach	the	Budget	table.
By	using	a	DAX	filter,	you	can	force	the	filter	from	the	Brand	column	in

Products	to	the	Brand	column	in	Budget.	The	filter	must	be	written	in	different
ways,	depending	on	the	version	of	DAX	you	have	available.	In	Power	BI	and
Excel	2016	and	later,	you	can	leverage	set	functions.	In	fact,	if	you	author	the	code
of	the	Budget	2009	measure	by	using	the	following	expression,	it	will	correctly
slice	by	brand	and	country/region:
Click	here	to	view	code	image

Budget	2009	:=

CALCULATE	(

				SUM	(Budget[Budget]),

				INTERSECT	(VALUES	(Budget[Brand]),	VALUES	('Product'[Brand])),

				INTERSECT	(VALUES	(Budget[CountryRegion]),	VALUES	(Store[CountryRegion]))

)

The	INTERSECT	function	performs	a	set	intersection	between	the	values	of
Product[Brand]	and	the	values	of	Budget[Brand].	Because	the	Budget
table,	having	no	relationships,	is	not	filtered,	the	result	will	be	a	set	intersection
between	all	the	values	of	Brand	in	Budget	and	the	visible	ones	in	Product.	In	other
words,	the	filter	on	Product	will	be	moved	to	the	Budget	table,	for	the	Brand
column.	Because	there	are	two	such	filters,	both	the	filter	on	Brand	and	the	filter
on	CountryRegion	will	be	moved	to	Budget,	starting	from	Product	and	Store.
The	technique	looks	like	the	dynamic	segmentation	pattern	covered	in	Chapter

10,	“Segmentation	data	models.”	In	fact,	because	we	do	not	have	a	relationship
and	we	cannot	create	it,	we	rely	on	DAX	to	mimic	it	so	that	the	user	thinks	the
relationship	is	in	place,	even	if	there	is	none.
In	Excel	2013,	the	INTERSECT	function	is	not	available.	You	must	use	a

different	technique,	based	on	the	CONTAINS	function,	as	in	the	following	code:
Click	here	to	view	code	image

Budget	2009	Contains	=

CALCULATE	(

				SUM	(Budget[Budget]),

				FILTER	(

								VALUES	(Budget[Brand]),

								CONTAINS	(

												VALUES	('Product'[Brand]),

												'Product'[Brand],

													Budget[Brand]

)

),

				FILTER	(

								VALUES	(Budget[CountryRegion]),

								CONTAINS	(

												VALUES	(Store[CountryRegion]),

												Store[CountryRegion],

												Budget[CountryRegion]

)

)

)

This	code	is	much	more	complex	than	the	simple	INTERSECT	used	in	the
previous	expression,	but	if	you	need	to	use	such	a	pattern	in	Excel	2010	or	Excel
2013,	it	is	your	best	option.	Figure	9-7	shows	how	the	two	measures	return	the
very	same	number,	even	if	they	use	a	slightly	different	technique	to	obtain	the
result.

FIGURE	9-7	Budget	2009	and	Budget	2009	Contains	compute	the	very	same
result.

The	technique	discussed	here	does	not	require	you	to	change	the	data	model
because	it	relies	only	on	the	use	of	DAX.	It	works	just	fine,	but	the	code	tends	to
be	somewhat	complex	to	write,	especially	if	you	are	using	an	older	version	of
Excel.	With	that	said,	the	version	using	set	functions	might	easily	become	too
complex	if,	instead	of	only	two,	you	start	to	have	a	significant	number	of	attributes
in	the	Budget	table.	In	fact,	you	will	need	to	add	a	new	INTERSECT	function	call
for	each	of	the	columns	that	define	the	granularity	of	the	budget	table.
Another	issue	with	this	measure	is	performance.	The	INTERSECT	function

will	rely	on	the	slower	part	of	the	DAX	language,	so	for	large	models,
performance	might	be	suboptimal.	Fortunately,	in	January	2017,	DAX	was
extended	with	a	specific	function	to	handle	these	scenarios:	TREATAS.	In	fact,
with	the	latest	versions	of	the	DAX	language,	you	can	write	the	measure	as
follows:
Click	here	to	view	code	image

Budget	2009	:=

CALCULATE	(

				SUM	(Budget[Budget]),

				TREATAS	(VALUES	(Budget[Brand]),	'Product'[Brand]),

				TREATAS	(VALUES	(Budget[CountryRegion]),	Store[CountryRegion])

)

The	TREATAS	function	works	in	a	similar	way	to	INTERSECT.	It	is	faster
than	INTERSECT,	but	much	slower	than	the	relationship	version	we	are	about	to
show	in	the	next	section.

Filtering	through	relationships
In	the	previous	section,	we	solved	the	scenario	of	budgeting	by	using	DAX	code.
In	this	section,	we	will	work	on	the	same	scenario,	but	instead	of	using	DAX,	we
will	solve	it	by	changing	the	data	model	to	rely	on	relationships	that	propagate	the
filter	in	the	right	way.	The	idea	is	to	mix	the	first	technique,	which	is	the	reduction
of	granularity	of	Sales	and	the	creation	of	two	new	dimensions,	with	a	snowflake
model.
First,	we	can	use	the	following	DAX	code	to	create	two	new	dimensions:

Brands	and	CountryRegions.
Click	here	to	view	code	image

Brands	=

DISTINCT	(

				UNION	(

								ALLNOBLANKROW	(Product[Brand]),

								ALLNOBLANKROW	(Budget[Brand])

)

)

CountryRegions	=

DISTINCT	(

				UNION	(

								ALLNOBLANKROW	(Store[CountryRegion]),

								ALLNOBLANKROW	(Budget[CountryRegion])

)

)

After	the	tables	are	created,	you	can	set	up	the	relationships	by	making	them	a

snowflake	(for	Sales)	and	direct	dimensions	(for	Budget),	as	in	the	data	model
shown	in	Figure	9-8.

FIGURE	9-8	Brands	and	CountryRegions	are	additional	dimensions	that	fix	the
granularity	issue.

With	this	model	in	place,	which	is	a	perfect	star	schema,	you	can	use	the	Brand
column	in	Brands	or	the	CountryRegion	column	in	CountryRegions	to	slice	both
Sales	and	Budget	at	the	same	time.	You	need	to	be	very	careful	to	use	the	right
column,	however.	If	you	use	the	Brand	column	in	Product,	it	will	not	be	able	to
slice	Brands	or,	by	extension,	Budget,	because	of	the	direction	of	relationship
cross-filtering.	For	this	reason,	it	is	a	very	good	practice	to	hide	the	columns	that
filter	the	model	in	a	partial	(and	unwanted)	way.	If	you	were	to	keep	the	previous
model,	then	you	should	hide	the	CountryRegion	column	in	both	Budget	and	Store,
as	well	as	the	Brand	column	in	Product	and	Budget.
The	good	news	is	that,	in	Power	BI,	you	have	full	control	over	the	propagation

of	relationship	cross-filtering.	Thus,	you	can	choose	to	enable	bidirectional
filtering	on	the	relationship	between	Product,	Brands,	and	CountryRegions.	The
model	you	obtain	is	shown	in	Figure	9-9.

FIGURE	9-9	In	this	model,	Brands	and	CountryRegions	are	hidden,	and	their
relationships	with	Product	and	Store	are	set	as	bidirectional.

At	first,	there	seems	to	be	no	difference	between	Figure	9-8	and	Figure	9-9.	But
even	if	the	models	contain	the	very	same	tables,	the	difference	is	in	how	the
relationships	are	set.	The	relationship	between	Product	and	Brands	has	a
bidirectional	filter,	exactly	like	the	one	between	Store	and	CountryRegions.
Moreover,	both	the	Brands	and	CountryRegions	tables	are	hidden.	This	is

because	they	now	became	helper	tables	(that	is,	tables	that	are	used	in	formulas
and	code	but	are	not	useful	for	the	user	to	look	at).	After	you	filter	the	Brand
column	in	Product,	the	bidirectional	filter	in	the	relationship	moves	the	filter	from
Product	to	Brands.	From	there,	the	filter	will	flow	naturally	to	Budget.	The
relationship	between	Store	and	CountryRegions	exhibits	the	same	behavior.	Thus,
you	built	a	model	where	a	filter	on	either	Product	or	Store	filters	Budget,	and
because	the	two	technical	tables	are	hidden,	the	user	will	have	a	very	natural
approach	to	it.
This	technique	offers	significant	performance	advantages.	In	fact,	being	based

on	relationships,	it	improves	the	use	of	the	fastest	part	of	the	DAX	engine,	and	it
applies	filters	and	uses	filter	propagation	only	when	necessary.	(This	is	not	the
case	with	the	solution	described	in	the	previous	section,	where	we	used	a
FILTER	function	regardless	of	an	existing	selection	on	affected	dimensions.)
This	results	in	optimal	performance.	Finally,	because	the	granularity	issue	is

handled	in	the	model,	the	measures	become	simple	SUM	operations,	with	no
CALCULATE	operations	or	filtering	happening	inside.	From	a	maintainability
point	of	view,	this	is	extremely	important	because	it	means	that	any	new	formula
will	not	need	to	repeat	the	filtering	pattern	that	was	mandatory	in	the	previous
models.

Hiding	values	at	the	wrong	granularity
In	previous	sections,	we	attempted	to	address	the	granularity	issue	by	moving
Sales	to	the	lower	granularity	of	Budget,	losing	expressivity.	Then	we	managed	to
merge	the	two	fact	tables	in	a	single	data	model	by	using	intermediate,	hidden
snowflaked	dimensions,	which	let	the	user	seamlessly	browse	Budget	and	Sales.
Nevertheless,	even	if	the	user	can	browse	budget	values	slicing	by	the	product
brand,	he	or	she	will	not	be	able	to	slice	by,	say,	product	color.	In	fact,	color	has	a
different	distribution	than	brand,	and	Budget	does	not	contain	information	at	the
color	granularity.	Let	us	examine	this	with	an	example.	If	you	build	a	simple
report	that	slices	Sales	and	Budget	by	color,	you	obtain	a	result	similar	to	what	is
shown	in	Figure	9-10.

FIGURE	9-10	Sales	Amount	is	additive,	whereas	Budget	2009	is	not.	The	sum	of
the	rows	is	much	higher	than	the	grand	total.

You	might	notice	a	pattern	like	that	in	the	many-to-many	relationship.	In	fact,
this	is	exactly	what	is	happening.	The	report	is	not	showing	the	budget	for
products	of	a	given	color	because	the	Budget	fact	table	does	not	contain	any
information	about	the	products.	It	only	knows	about	brands.	In	fact,	the	number
shown	is	the	value	of	Budget	for	any	brand	that	has	at	least	one	product	of	the
given	color.	This	number	has	at	least	two	problems.	First,	it	is	wrong.	Second,	it
is	difficult	to	spot	that	it	is	wrong.
You	don’t	want	such	a	report	to	come	out	of	your	models.	The	best-case

scenario	is	that	users	might	complain	about	numbers.	The	worst-case	scenario	is
that	they	might	make	decisions	based	on	wrong	figures.	As	a	data	modeler,	it	is
your	responsibility	to	make	sure	that	if	a	number	cannot	be	computed	out	of	the
model,	you	clearly	show	the	error	and	do	not	provide	any	answer.	In	other	words,
your	code	needs	to	contain	some	logic	to	make	sure	that	if	a	number	is	returned	by

your	measures,	that	number	is	the	right	one.	Returning	a	wrong	result	is,	to	state
the	obvious,	not	an	option.
As	you	might	imagine,	the	next	question	is	this:	How	do	you	know	that	you

should	not	return	any	value?	This	is	easy,	even	if	it	requires	some	DAX
knowledge.	You	must	determine	whether	the	PivotTable	(or	the	report	in	general)
is	browsing	data	beyond	the	granularity	at	which	the	number	still	makes	sense.	If	it
is	above	the	granularity,	then	you	are	aggregating	values,	which	is	fine.	If	it	is
below	the	granularity,	then	you	are	splitting	values	based	on	the	granularity,	even
if	you	are	showing	them	at	a	more	detailed	level.	In	such	a	case,	you	should	return
a	BLANK	result	to	inform	the	user	that	you	do	not	know	the	answer.
The	key	to	solving	this	scenario	is	being	able	to	count	the	number	of	products

(or	stores)	selected	at	the	Sales	granularity	and	compare	them	with	the	number	of
products	selected	at	the	Budget	granularity.	If	the	two	numbers	are	equal,	then	the
filter	induced	by	the	products	will	produce	meaningful	values	in	both	fact	tables.
If,	on	the	other	hand,	the	numbers	are	different,	then	the	filter	will	produce	an
incorrect	result	on	the	table	with	the	lower	granularity.	To	achieve	this,	you	define
the	following	two	measures:
Click	here	to	view	code	image

ProductsAtSalesGranularity	:=	COUNTROWS	(Product)

ProductsAtBudgetGranularity	:=

CALCULATE	(

				COUNTROWS	(Product),

				ALL	(Product),

				VALUES	(Product[Brand])

)

ProductsAtSalesGranularity	counts	the	number	of	products	at	the	maximum
granularity—that	is,	the	product	key.	Sales	is	linked	to	Product	at	this	granularity.
ProductsAtBudgetGranularity,	on	the	other	hand,	counts	the	number	of	products,
taking	into	account	only	the	filter	on	Brand	and	removing	any	other	existing	filters.
This	is	the	very	definition	of	the	granularity	of	Budget.	You	can	appreciate	the
difference	between	the	two	measures	if	you	build	a	report	like	the	one	shown	in
Figure	9-11,	which	slices	the	two	measures	by	brand	and	color.

FIGURE	9-11	This	report	shows	the	number	of	products	at	different	granularities.

The	two	measures	report	the	same	value	only	when	there	is	a	filter	on	the	brand
and	no	other	filter	is	applied.	In	other	words,	the	two	numbers	are	equal	only
when	the	Product	table	is	sliced	at	the	Budget	granularity.	The	same	needs	to	be
done	for	Store,	too,	where	the	granularity	is	country/region.	You	define	two
measures	to	check	the	granularity	at	the	store	level	by	using	the	following	code:
Click	here	to	view	code	image

StoresAtSalesGranularity	:=	COUNTROWS	(Store)

StoresAtBudgetGranularity	:=

CALCULATE	(

				COUNTROWS	(Store),

				ALL	(Store),

				VALUES	(Store[CountryRegion])

)

When	you	use	them	in	a	report,	the	two	measures	return	the	same	number	at	the
budget	granularity	and	above,	as	shown	in	Figure	9-12.

FIGURE	9-12	This	report	shows	the	number	of	stores	at	different	granularities.

In	fact,	the	numbers	are	identical	not	only	at	the	country/region	level,	but	also	at
the	continent	level.	This	is	correct	because	Continent	has	higher	granularity	than
CountryRegion,	and	the	value	of	the	Budget,	at	the	Continent	level,	is	correct.
The	last	step,	to	make	sure	you	show	only	meaningful	numbers	for	Budget,	is	to

blank	out	the	Budget	measure	when	the	measures	we	have	written	so	far	do	not
match.	This	can	be	easily	accomplished	by	using	a	conditional	formula	as	in	the
following	code:
Click	here	to	view	code	image

Budget	2009	:=

IF	(

				AND	(

								[ProductsAtBudgetGranularity]	=	[ProductsAtSalesGranularity],

								[StoresAtBudgetGranularity]	=	[StoresAtSalesGranularity]

),

				SUM	(Budget[Budget])

)

The	additional	condition	ensures	that	a	value	is	returned	if	and	only	if	the	report

is	not	browsing	below	the	granularity	of	Budget.	The	result	is	shown	in	Figure	9-
13,	where	Budget	is	correctly	reported	at	the	brand	level,	and	is	blanked	at	the
color	level.

FIGURE	9-13	This	report	blanks	the	value	of	Budget	below	the	correct
granularity.

	Note

Whenever	you	have	fact	tables	at	different	granularity,	it	is	very
important	to	recognize	when	a	value	should	not	be	shown	because	of
granularity	issues.	Otherwise,	the	report	will	always	produce	a
number—and	it	is	likely	to	be	the	wrong	one.

Allocating	values	at	a	higher	granularity
In	the	previous	examples,	you	learned	how	to	hide	values	when	the	user	is
browsing	at	a	granularity	that	is	no	longer	supported	by	the	data	model.	This
technique	is	useful	to	avoid	showing	a	wrong	number.	For	some	specific
scenarios,	however,	you	can	do	more	than	this.	You	can	compute	the	value	at	the
higher	granularity	using	an	allocation	factor.	For	example,	suppose	you	do	not

know	the	budget	of	blue	products	at	a	company	called	Adventure	Works.	(You
only	know	the	budget	for	the	total	of	Adventure	Works.)	You	can	ascertain	this	by
taking	a	percentage	of	the	total	budget,	which	you	can	compute	on	the	fly.	This
percentage	is	the	allocation	factor.
A	good	allocation	factor	can	be,	for	example,	the	percentage	of	sales	of	blue

products	against	the	totality	of	colors	in	the	previous	year.	Rather	than	trying	to
describe	it	with	words,	it	is	much	simpler	to	look	at	the	final	report	shown	in
Figure	9-14.

FIGURE	9-14	The	Allocated	Budget	column	shows	values	at	a	higher	granularity
by	computing	them	dynamically.

Let	us	examine	Figure	9-14	in	more	detail.	In	previous	figures,	we	used	Sales
2009,	whereas	here	we	are	showing	Sales	2008.	This	is	because	we	use	Sales
2008	to	compute	the	allocation	factor,	which	is	defined	here	as	the	amount	of	sales
in	2008	of	blue	products	divided	by	the	amount	of	sales	in	2008	at	the	Budget
granularity.
You	can	see,	for	example,	that	blue	products	from	Adventure	Works	made

$8,603.64	in	sales,	which,	divided	by	$93,587.00,	results	in	9.19%	as	the	share	of
sales	in	2008.	The	budget	of	blue	products	is	not	available	in	2009,	but	you	can
compute	it	by	multiplying	the	budget	of	Adventure	Works	products	by	the	share	in
2008,	for	an	expected	value	of	$6,168.64.
Computing	the	value	is	simple	when	you	understand	the	granularity	details.	It	is

a	simple	variation	on	the	formulas	you	have	seen	so	far,	as	shown	in	the	following
DAX	code:
Click	here	to	view	code	image

Sales2008AtBudgetGranularity	:=

CALCULATE	(

				[Sales	2008],

				ALL	(Store),

				VALUES	(Store[CountryRegion]),

				ALL	(Product),

				VALUES	(Product[Brand])

)

AllocationFactor	:=	DIVIDE	([Sales	2008],	[Sales2008AtBudgetGranularity])

Allocated	Budget	:=	SUM	(Budget[Budget])	*	[AllocationFactor]

The	core	of	the	previous	formulas	is	Sales2008AtBudgetGranularity,	which
computes	the	sales	amount	after	removing	filters	from	Store	and	Product,	apart
from	the	columns	that	define	the	granularity	at	the	Budget	level.	The	remaining	two
measures	are	a	simple	division	and	a	multiplication.	Use	the	numbers	shown	in
Figure	9-14	to	produce	the	desired	result.
The	technique	of	reallocating	at	the	higher	granularity	is	very	interesting,	and	it

gives	the	user	the	feeling	that	numbers	are	present	at	a	higher	granularity	than	they
really	are.	However,	if	you	plan	to	use	this	technique,	you	should	clearly	explain
how	the	numbers	are	computed	to	the	stakeholders.	At	the	very	end,	the	numbers
are	derived	from	a	calculation,	and	they	are	not	what	is	entered	when	the	budget	is
created.

Conclusions
Granularity	is	one	topic	you	need	to	understand	to	build	any	data	model,	and	has
been	discussed	in	many	chapters	throughout	this	book.	This	chapter	went	a	step
further	to	analyze	some	options	that	are	available	when	granularity	cannot	be	fixed
because	data	is	already	stored	at	the	right	level.
The	most	important	topics	covered	in	this	chapter	are	as	follows:
	Granularity	is	defined	by	the	level	at	which	the	dimensions	are	linked	to	the
fact	table.
	Different	fact	tables	can	present	different	levels	of	granularity	because	of

the	nature	of	their	data.	Usually,	granularity	issues	are	errors	in	the	model.
However,	there	are	scenarios	where	fact	tables	are	stored	at	the	correct
granularity,	which	is	different	from	table	to	table.
	When	multiple	fact	tables	have	different	granularity,	you	must	build	a	model
that	lets	you	slice	all	the	tables	using	one	dimension.	You	can	do	so	either	by
creating	a	special	model	at	the	correct	granularity	or	by	moving	the	filter
through	DAX	code	or	bidirectional	relationships.
	You	must	be	aware	of	granularity	differences	among	your	facts	and	handle
them	properly.	You	have	multiple	options:	ignoring	the	problem,	hiding	the
data	when	granularity	becomes	too	high,	or	reallocating	the	values	using
some	allocation	factor.

Chapter	10.	Segmentation	data	models

In	Chapter	9,	“Working	with	different	granularity,”	you	learned	how	to	model	your
data	with	standard	relationships:	two	tables	related	based	on	a	single	column.	At
the	end,	many-to-many	relationships	were	built	using	standard	relationships.	In
this	chapter,	you	will	learn	how	to	handle	more	complex	relationships	between
tables	by	leveraging	the	DAX	language.	Tabular	models	can	handle	simple	or
bidirectional	relationships	between	tables,	which	might	look	somewhat	limited.
However,	by	taking	advantage	of	the	DAX	language,	you	can	create	very
advanced	models	with	basically	any	kind	of	relationship,	including	virtual	ones.
When	it	comes	to	solving	complex	scenarios,	DAX	plays	an	important	role	in	the
definition	of	the	data	model.
To	demonstrate	these	kinds	of	relationships,	we	will	use	as	examples	some	data

models	where	the	main	topic	is	that	of	segmenting	the	data.	Segmentation	is	a
common	modeling	pattern	that	happens	whenever	you	want	to	stratify	your	data
based	on	some	configuration	table.	Imagine,	for	example,	that	you	want	to	cluster
your	customers	based	on	the	age	range,	your	products	based	on	the	amount	sold,	or
your	customers	based	on	the	revenues	generated.
The	goal	of	this	chapter	is	not	to	give	you	pre-built	patterns	that	you	can	use	in

your	model.	Instead,	we	want	to	show	you	unusual	ways	of	using	DAX	to	build
complex	models,	to	broaden	your	understanding	of	relationships,	and	to	let	you
experience	what	you	can	achieve	with	DAX	formulas.

Computing	multiple-column	relationships
The	first	set	of	relationships	we	will	show	is	calculated	physical	relationships.
The	only	difference	between	this	and	a	standard	relationship	is	that	the	key	of	the
relationship	is	a	calculated	column.	In	scenarios	where	the	relationship	cannot	be
set	because	a	key	is	missing,	or	you	need	to	compute	it	with	complex	formulas,
you	can	leverage	calculated	columns	to	set	up	the	relationship.	Even	if	based	on
calculated	columns,	this	will	still	be	a	physical	relationship.
The	Tabular	engine	only	allows	you	to	create	relationships	based	on	a	single

column.	It	does	not	support	relationships	based	on	more	than	one	column.	Yet,
relationships	based	on	multiple	columns	are	very	useful,	and	appear	in	many	data
models.	If	you	need	to	work	with	these	kinds	of	models,	use	the	two	following
methods	to	do	so:

	Define	a	calculated	column	that	contains	the	composition	of	the	keys	and	use

it	as	the	new	key	for	the	relationship.
	Denormalize	the	columns	of	the	target	table	(the	one	side	in	a	one-to-many
relationship)	using	the	LOOKUPVALUE	function.

As	an	example,	imagine	you	have	a	special	“Product	of	the	Day”	promotion,
where	on	some	days,	you	make	a	special	promotion	for	a	single	product	with	a
given	discount,	as	shown	in	Figure	10-1.

FIGURE	10-1	The	SpecialDiscounts	table	needs	a	relationship	based	on	two
columns	with	Sales.

The	table	with	the	promotion	(SpecialDiscounts)	contains	three	columns:
ProductKey,	OrderDateKey,	and	Discount.	If	you	need	to	use	this	information	to
compute,	for	example,	the	amount	of	the	discount,	you	face	the	problem	that	for
any	given	sale,	the	discount	depends	on	ProductKey	and	OrderDateKey.	Thus,	you
cannot	create	the	relationship	between	Sales	and	SpecialDiscounts,	because	it
would	involve	two	columns,	and	Tabular	supports	only	single-column
relationships.
To	find	a	possible	solution	to	this	scenario,	consider	that	nothing	prevents	you

from	creating	a	relationship	based	on	a	calculated	column.	In	fact,	if	the	engine
does	not	support	a	relationship	based	on	two	columns,	you	can	build	a	new
column	that	contains	both,	and	then	build	a	relationship	on	top	of	this	new	column.
You	can	create	a	new	calculated	column	in	both	the	SpecialDiscount	and	Sales
tables	that	contains	the	combination	of	the	two	columns	by	using	the	following

code:
Click	here	to	view	code	image

Sales[SpecialDiscountKey]	=	Sales[ProductKey]	&	"-"

&	Sales[OrderDateKey]

You	use	a	similar	expression	in	SpecialDiscount.	After	you	define	the	two
columns,	you	can	finally	create	the	relationship	between	the	two	tables.	This
results	in	the	model	shown	in	Figure	10-2.

FIGURE	10-2	You	can	use	the	calculated	column	as	the	basis	of	the	relationship.

This	solution	is	straightforward	and	works	just	fine.	However,	there	are	several
scenarios	where	this	is	not	the	best	solution	because	it	requires	you	to	create	two
calculated	columns	that	might	have	many	different	values.	From	a	performance
point	of	view,	this	is	not	advisable.
Another	possible	solution	to	the	same	scenario	is	to	use	the	LOOKUPVALUE

function.	Using	LOOKUPVALUE,	you	can	denormalize	the	discount	directly	in	the
fact	table	by	defining	a	new	calculated	column	in	Sales	that	contains	the	following

code:
Click	here	to	view	code	image

Sales[SpecialDiscount]	=

LOOKUPVALUE	(

				SpecialDiscounts[Discount],

				SpecialDiscounts[ProductKey],	Sales[ProductKey],

				SpecialDiscounts[OrderDateKey],	Sales[OrderDateKey]

)

Following	this	second	pattern,	you	do	not	create	any	relationship.	Instead,	you
move	the	Discount	value	in	the	fact	table,	performing	a	lookup.	In	a	more	technical
way,	we	say	you	denormalized	the	SpecialDiscount	value	from	the
SpecialDiscounts	table	into	Sales.
Both	options	work	fine,	and	the	choice	between	them	depends	on	several

factors.	If	Discount	is	the	only	column	you	need	to	use	from	the	SpecialDiscount
table,	then	denormalization	is	the	best	option.	Only	a	single	calculated	column	is
created,	with	fewer	distinct	values,	comparatively	to	two	calculated	columns	with
many	more	distinct	values.	Thus,	it	reduces	memory	usage	and	makes	the	code
simpler	to	author.
If,	on	the	other	hand,	SpecialDiscounts	contains	many	columns	that	you	need	to

use	in	your	code,	then	each	of	them	would	have	to	be	denormalized	in	the	fact
table,	resulting	in	a	waste	of	memory	and,	possibly,	in	worse	performance.	In	that
case,	the	calculated	column	with	the	new	composite	key	would	be	a	superior
method.
This	first	simple	example	is	important	because	it	demonstrates	a	common	and

important	feature	of	DAX:	the	ability	to	create	relationships	based	on	calculated
columns.	This	capability	shows	that	you	can	create	any	kind	of	relationship,	as
long	as	you	can	compute	it	and	materialize	it	in	a	calculated	column.	In	the	next
example,	we	will	show	you	how	to	create	relationships	based	on	static	ranges.	By
extending	the	concept,	you	can	create	almost	any	kind	of	relationship.

Computing	static	segmentation
Static	segmentation	is	a	very	common	scenario	where	you	have	a	value	in	a	table,
and,	rather	than	being	interested	in	the	analysis	of	the	value	itself	(as	there	might
be	hundreds	or	thousands	of	possible	values),	you	want	to	analyze	it	by	splitting
the	value	into	segments.	Two	very	common	examples	are	the	analysis	of	sales	by
customer	age	or	by	list	price.	It	is	pointless	to	partition	sales	amounts	by	all

unique	values	of	list	price	because	there	are	too	many	different	values	in	list
price.	However,	if	you	group	different	prices	in	ranges,	then	it	may	be	possible	to
obtain	good	insight	from	the	analysis	of	these	groups.
In	this	example,	you	have	a	table,	PriceRanges,	that	contains	the	price	ranges.

For	each	range,	you	define	the	boundaries	of	the	range	itself,	as	shown	in	Figure
10-3.

FIGURE	10-3	This	is	the	configuration	table	for	the	price	ranges.

Here,	as	in	the	previous	example,	you	cannot	create	a	direct	relationship
between	the	fact	table,	containing	sales,	and	the	PriceRanges	configuration	table.
This	is	because	the	key	in	the	configuration	table	depends	on	a	range	relationship,
and	range	relationships	are	not	supported	by	DAX.	In	this	case,	the	best	solution
is	to	denormalize	the	price	range	directly	in	the	fact	table	by	using	a	calculated
column.	The	pattern	of	the	code	is	similar	to	the	previous	one,	with	the	main
difference	being	the	following	formula:
Click	here	to	view	code	image

Sales[PriceRange]	=

CALCULATE	(

				VALUES	(PriceRanges[PriceRange]),

				FILTER	(

								PriceRanges,

								AND	(

												PriceRanges[MinPrice]	<=	Sales[Net	Price],

												PriceRanges[MaxPrice]	>	Sales[Net	Price]

)

)

)

It	is	interesting	to	note	the	use	of	VALUES	in	this	code	to	retrieve	a	single

value.	VALUES	returns	a	table,	not	a	value.	However,	whenever	a	table	contains	a
single	row	and	a	single	column,	it	is	automatically	converted	into	a	scalar	value,
if	needed	by	the	expression.
Because	of	the	way	FILTER	computes	its	result,	it	will	always	return	a	single

row	from	the	configuration	table.	Thus,	VALUES	is	guaranteed	to	always	return	a
single	row,	and	the	result	of	CALCULATE	is	the	description	of	the	price	range
containing	the	current	net	price.	Obviously,	this	expression	works	fine	if	the
configuration	table	is	well	designed.	However,	if	for	any	reason	the	ranges
contain	holes	or	overlap,	then	VALUES	will	return	many	rows,	and	the	expression
might	result	in	an	error.
A	better	way	to	author	the	previous	code	is	to	leverage	the	error-handling

function,	which	will	detect	the	presence	of	a	wrong	configuration,	and	return	an
appropriate	message,	as	in	the	following	code:
Click	here	to	view	code	image

Sales[PriceRange]	=

VAR	ResultValue	=

				CALCULATE	(

								IFERROR	(

												VALUES	(PriceRanges[PriceRange]),

												"Overlapping	Configuration"

),

								FILTER	(

												PriceRanges,

												AND	(

																PriceRanges[MinPrice]	<=	Sales[Net	Price],

																PriceRanges[MaxPrice]	>	Sales[Net	Price]

)

)

)

RETURN

				IF	(

								ISEMPTY	(ResultValue),

								"Wrong	Configuration",

								ResultValue

)

This	code	detects	both	overlapping	values	(with	the	internal	IFERROR)	and
holes	in	the	configuration	(by	checking	the	result	value	with	ISEMPTY	before

returning	it	to	the	caller).	Because	it	is	guaranteed	to	always	return	a	good	value,
this	code	is	much	safer	to	use	than	the	previous	code.
Calculated	physical	relationships	are	a	very	powerful	tool	in	Power	BI	and

Excel	modeling	because	they	let	you	create	very	advanced	relationships.	In
addition,	the	computation	of	the	relationship	happens	during	the	refresh	time	when
you	update	the	data,	not	when	you	query	the	model.	Thus,	they	result	in	very	good
query	performance	regardless	of	their	complexity.

Using	dynamic	segmentation
There	are	many	scenarios	where	you	cannot	set	the	logical	relationship	between
tables	in	a	static	way.	In	these	cases,	you	cannot	use	calculated	static
relationships.	Instead,	you	need	to	define	the	relationship	in	the	measure	to	handle
the	calculations	in	a	more	dynamic	way.	In	these	cases,	because	the	relationship
does	not	belong	to	the	model,	we	speak	of	virtual	relationships.	These	are	in
contrast	to	the	physical	relationships	you	have	explored	so	far.
This	next	example	of	a	virtual	relationship	solves	a	variation	of	the	static

segmentation	we	showed	earlier	in	this	chapter.	In	the	static	segmentation,	you
assigned	each	sale	to	a	specific	segment	using	a	calculated	column.	In	dynamic
segmentation,	the	assignment	happens	dynamically.
Imagine	you	want	to	cluster	your	customers	based	on	the	sales	amount.	The

sales	amount	depends	on	the	slicers	used	in	the	report.	Therefore,	the
segmentation	cannot	be	static.	If	you	filter	a	single	year,	then	a	customer	might
belong	to	a	specific	cluster.	However,	if	you	change	the	year,	the	same	customer
could	belong	to	a	different	cluster.	In	this	scenario,	because	you	cannot	rely	on	a
physical	relationship,	you	cannot	modify	the	data	model	to	make	the	DAX	code
easier	to	author.	In	such	a	case,	your	only	option	is	to	roll	up	your	sleeves	and	use
some	advanced	DAX	to	compute	the	value.
You	start	by	defining	the	configuration	table,	Segments,	which	is	shown	in

Figure	10-4.

FIGURE	10-4	The	configuration	table	for	dynamic	segmentation.

The	measure	to	compute	is	the	number	of	customers	that	belong	to	a	specific
cluster.	In	other	words,	you	want	to	count	how	many	customers	belong	to	a
segment,	considering	all	the	filters	in	the	current	filter	context.	The	following
formula	looks	very	innocent,	but	it	requires	some	attention	because	of	its	usage	of
context	transition:
Click	here	to	view	code	image

CustInSegment	:=

COUNTROWS	(

				FILTER	(

								Customer,

								AND	(

												[Sales	Amount]	>	MIN	(Segments[MinSale]),

												[Sales	Amount]	<=	MAX	(Segments[MaxSale])

)

)

)

To	understand	the	formula	behavior,	it	is	useful	to	look	at	a	report	that	shows
the	segments	on	the	rows	and	the	calendar	year	on	columns.	The	report	is	shown
in	Figure	10-5.

FIGURE	10-5	This	PivotTable	shows	the	dynamic	segmentation	pattern	in	action.

Look	at	the	cell	that	shows	76	customers	belonging	to	the	Medium	cluster	in
2008.	The	formula	iterated	over	Customer,	and	for	each	customer	it	checked
whether	the	value	of	Sales	Amount	for	that	customer	fell	between	MIN	of	MinSale
and	MAX	of	MaxSale.	The	value	of	Sales	Amount	represents	the	sales	of	the
individual	customer,	due	to	context	transition.	The	resulting	measure	is,	as

expected,	additive	against	segments	and	customers,	and	nonadditive	against	all
other	dimensions.
The	formula	only	works	if	you	select	all	of	the	segments.	If	you	select,	for

example,	only	Very	Low	and	Very	High	(removing	the	three	intermediate	segments
from	the	selection),	then	MIN	and	MAX	will	not	be	the	correct	choice.	They	would
enclose	all	the	customers,	which	would	give	the	wrong	results	in	the	grand	total,
as	shown	in	Figure	10-6.

FIGURE	10-6	This	PivotTable	shows	wrong	values	when	used	with	a	slicer	with
non-contiguous	selections.

If	you	want	to	let	the	user	select	some	of	the	segments,	then	you	need	to	write
the	formula	in	the	following	way:
Click	here	to	view	code	image

CustInSegment	:=

SUMX	(

				Segments,

				COUNTROWS	(

								FILTER	(

												Customer,

												AND	(

																[Sales	Amount]	>	Segments[MinSale],

																[Sales	Amount]	<=	Segments[MaxSale]

)

)

)

)

This	version	of	the	formula	does	not	suffer	from	the	issue	of	partial	selection	of
segments,	but	it	might	result	in	worse	performance	because	it	requires	a	double
iteration	over	the	tables.	The	result	is	shown	in	Figure	10-7,	which	now	yields	the
correct	value.

FIGURE	10-7	At	the	grand	total,	the	two	measures	now	show	different	values
because	of	the	partial	selection	of	segments.

Virtual	relationships	are	extremely	powerful.	They	do	not	actually	belong	to	the
model,	even	if	the	user	perceives	them	as	real	relationships,	and	they	are	entirely
computed	using	DAX	at	query	time.	If	the	formula	is	very	complex,	or	if	the	size
of	the	model	becomes	too	large,	performance	might	be	an	issue.	However,	they
work	absolutely	fine	for	medium-sized	models.

	Tip

We	suggest	you	try	to	map	these	concepts	in	your	specific	business	to
see	whether	this	pattern	can	be	useful	for	any	stratification	you	might
want	to	pursue.

Understanding	the	power	of	calculated	columns:	ABC	analysis
Calculated	columns	are	stored	inside	the	database.	From	a	modeling	point	of
view,	this	has	a	tremendous	impact	because	it	opens	new	ways	of	modeling	data.
In	this	section,	you	will	look	at	some	scenarios	that	you	can	solve	very	efficiently
with	calculated	columns.
As	an	example	of	the	use	of	calculated	columns,	we	will	show	you	how	to

solve	the	scenario	of	ABC	analysis	using	Power	BI.	ABC	analysis	is	based	on	the
Pareto	principle.	In	fact,	it	is	sometimes	known	as	ABC/Pareto	Analysis.	It	is	a
very	common	technique	to	determine	the	core	business	of	a	company,	typically	in
terms	of	best	products	or	best	customers.	In	this	scenario,	we	focus	on	products.
The	goal	of	ABC	analysis	is	to	identify	which	products	have	a	significant

impact	on	the	overall	business	so	that	managers	can	focus	their	effort	on	them.	To
achieve	this,	each	product	is	assigned	a	category	(A,	B,	or	C),	so	that	the
following	is	true:

	Products	in	class	A	account	for	70	percent	of	the	revenues.
	Products	in	class	B	account	for	20	percent	of	the	revenues.

	Products	in	class	C	account	for	10	percent	of	the	revenues.
The	ABC	class	of	a	product	needs	to	be	stored	in	a	calculated	column	because

you	want	to	use	it	to	perform	analysis	on	products,	slicing	information	by	class.
For	example,	Figure	10-8	shows	you	a	simple	PivotTable	that	uses	the	ABC	class
on	the	rows.

FIGURE	10-8	The	ABC	class	is	used	in	this	report	to	show	products	and	margins
based	on	their	class.

As	often	happens	with	ABC	analysis,	you	can	see	that	only	a	few	products	are
in	class	A.	This	is	the	core	business	of	Contoso.	Products	in	class	B	are	less
important,	but	they	are	still	vital	for	the	company.	Products	in	class	C	are	good
candidates	for	removal	because	there	are	many	of	them	and	their	revenues	are	tiny
when	compared	with	the	core	products.
The	data	model	in	this	scenario	is	very	simple.	You	need	only	sales	and

products,	as	shown	in	Figure	10-9.

FIGURE	10-9	The	data	model	to	compute	the	ABC	classes	for	products	is	very
simple.

This	time,	we	will	change	the	model	by	simply	adding	some	columns.	No	new
table	or	relationship	will	be	needed.	To	compute	the	ABC	class	of	a	product,	you
must	compute	the	total	margin	of	that	product	and	compare	it	with	the	grand	total.
This	gives	you	the	percentage	of	the	overall	sales	for	which	that	single	product

accounts.	Then,	you	sort	products	based	on	that	percentage	and	perform	a	rolling
sum.	As	soon	as	the	rolling	sum	reaches	70	percent,	you	have	identified	products
in	class	A.	Remaining	products	will	be	in	class	B	until	you	reach	90	percent
(70+20),	and	further	products	will	be	in	class	C.	You	will	build	the	complete
calculations	using	only	calculated	columns.
First,	you	need	a	calculated	column	in	the	Product	table	that	contains	the	margin

for	each	product.	This	can	be	easily	accomplished	using	the	following	expression:
Click	here	to	view	code	image

Product[TotalMargin]	=

SUMX	(

				RELATEDTABLE(Sales),

				Sales[Quantity]	*	(Sales[Net	Price]	-	Sales[Unit	Cost])

)

Figure	10-10	shows	the	Product	table	with	this	new	calculated	column	in	which
the	data	is	sorted	in	descending	order	by	TotalMargin.

FIGURE	10-10	TotalMargin	is	computed	as	a	calculated	column	in	the	Product
table.

The	next	step	is	to	compute	a	running	total	of	TotalMargin	over	the	Product
table	ordered	by	TotalMargin.	The	running	total	of	each	product	is	the	sum	of	all

the	products	that	have	a	value	for	TotalMargin	greater	than	or	equal	to	the	current
value.	You	can	obtain	it	with	the	following	formula:
Click	here	to	view	code	image

Product[MarginRT]	=

VAR

				CurrentTotalMargin	=	'Product'[TotalMargin]

RETURN

				SUMX	(

								FILTER	(

												'Product',

												'Product'[TotalMargin]	>=	CurrentTotalMargin

),

				'Product'[TotalMargin]

)

Figure	10-11	shows	the	Product	table	with	this	new	column.

FIGURE	10-11	MarginRT	computes	a	running	total	over	the	rows	that	are	sorted
by	TotalMargin.

The	final	point	is	to	compute	the	running	total	sales	as	a	percentage	over	the
grand	total	of	margin.	A	new	calculated	column	easily	solves	the	problem.	You
can	add	a	RunningPct	column	with	the	following	formula:
Click	here	to	view	code	image

Product[MarginPct]	=	DIVIDE	('Product'[MarginRT],

SUM	('Product'[TotalMargin]))

Figure	10-12	shows	the	new	calculated	column,	which	has	been	formatted	as	a
percentage	to	make	the	result	more	understandable.

FIGURE	10-12	MarginPct	computes	the	percentage	of	the	running	total	over	the
grand	total.

The	final	touch	is	to	transform	the	percentage	into	the	class.	If	you	use	the
values	of	70,	20,	and	10,	the	formula	for	the	ABC	class	is	straightforward,	as	you
see	in	the	following	formula:
Click	here	to	view	code	image

Product[ABC	Class]	=

IF	(

				'Product'[MarginPct]	<=	0.7,

				"A",

				IF	(

								'Product'[MarginPct]	<=	0.9,

								"B",

								"C"

)

)

The	result	is	shown	in	Figure	10-13.

FIGURE	10-13	The	result	of	the	ABC	class	is	the	calculated	column,	ABC	Class.

Because	ABC	Class	is	a	calculated	column,	it	is	stored	inside	the	database,	and
you	can	use	it	on	slicers,	filters,	and	rows	or	columns	to	produce	interesting
reports.
As	this	example	shows,	you	have	the	option	of	storing	in	the	model	some

complex	calculations	by	using	calculated	columns	and	executing	them
systematically.	It	takes	some	time	to	recognize	whether	a	calculation	is	better
achieved	by	using	a	calculated	column	or	a	measure,	but	once	you	master	this,
with	practice,	you	will	unleash	the	power	of	calculated	columns.

	Note

You	can	find	more	information	on	ABC	analysis	at
http://en.wikipedia.org/wiki/ABC_analysis.

Conclusions
In	this	chapter,	we	moved	one	step	forward	from	standard	relationships	by
analyzing	some	segmentation	techniques	that	made	extensive	usage	of	the	DAX
language.	The	important	points	in	this	chapter	are	as	follows:

	Calculated	columns	can	be	used	to	create	relationships	by	building
calculated	relationships.	The	power	of	calculated	relationships	is	that	you
can	base	the	relationship	on	any	kind	of	calculation,	not	only	simple	joins
based	on	equality,	like	the	ones	supported	by	the	engine	out	of	the	box.
	If	the	relationship	cannot	be	created	because	it	is	dynamic,	because	it
depends	on	the	filter	and	slicers	used	in	the	report,	you	may	be	able	to

http://en.wikipedia.org/wiki/ABC_analysis

leverage	virtual	relationships.	Virtual	relationships	appear	like	standard
relationships	to	the	user,	but	they	are	computed	on	the	fly.	Performance	can
potentially	suffer,	but	the	flexibility	you	gain	is	well	worth	it.
	Calculated	columns	are	a	great	addition	to	the	modeling	feature	of	a	Tabular
solution.	Using	calculated	columns,	you	can	perform	very	complex
segmentation	with	a	few	calculated	columns	that	are	computed	at	model
refresh	time.	Thus,	they	are	a	marriage	between	speed	and	flexibility	that	let
you	create	extremely	powerful	models.

We	hope	that	these	few	examples	helped	you	gain	a	new	perspective	on	how	a
little	creativity	can	aid	you	in	building	great	models.

Chapter	11.	Working	with	multiple	currencies

In	this	chapter,	we	will	analyze	some	models	that	have	in	common	the	need	to
handle	multiple	sales	in	multiple	currencies.	As	you	will	learn,	whenever	you
need	to	handle	multiple	currencies,	the	number	of	problems	increases	by	a	lot.	In
fact,	there	are	many	decisions	you	will	need	to	make	to	accommodate	for	multiple
currencies	in	terms	of	the	size	of	the	model,	flexibility,	and	performance.
We	first	introduce	the	problem	of	currency	conversion,	showing	the	challenges

and	problems	you	might	face	when	developing	models	in	different	scenarios.
Then,	as	in	previous	chapters,	we	build	some	examples	of	data	models	involving
currency	conversion.	There	are	different	ways	of	modeling	the	same	scenario,	and
we	analyze	them	to	identify	the	pros	and	cons	of	each.

Understanding	different	scenarios
As	mentioned,	currency	conversion	hides	some	complexity	that	is	already	in	the
definition	of	the	problem.	In	fact,	a	large	company	is	likely	to	receive	and	to	pay
money	in	different	currencies,	and,	as	we	all	know,	the	value	of	a	currency
changes	over	time.	This	makes	it	important	to	convert	from	one	currency	to
another	to	compare	volumes	of	money	in	different	currencies.	Let	us	focus	on	a
simple	example.	Suppose	Contoso	received	EUR	100	on	January	20	from	a
customer.	How	do	we	convert	this	value	into	USD,	given	that	USD	is	the	main
currency	of	Contoso?	There	are	the	following	ways:

	You	immediately	transform	EUR	to	USD	when	the	money	is	received
This	is	the	simplest	way	to	handle	currency	conversion	because	basically,
you	have	a	single	currency	to	handle.
	You	deposit	EUR	into	a	current	account	and	then	use	it	to	pay	in	EUR
when	needed	This	makes	it	hard	to	build	reports	in	different	currencies
because	the	value	of	sales	changes	every	day,	depending	on	the	current
value	of	the	currency.
	You	deposit	EUR	into	a	current	account	and	perform	a	currency
conversion	at	the	end	of	the	month	(or	at	any	given	point	in	time	except
the	original	transaction)	In	this	case,	you	must	handle	multiple,	varying
currencies	for	a	limited	amount	of	time.

	Note

There	might	be	policies	that	make	any	one	of	these	three	basic
options	impossible.	The	reason	we	cited	these	three	different	ways	is
not	to	give	you	an	exhaustive	list	of	options.	Instead	we	wanted	to
show	at	least	three	legitimate	ways	of	managing	currency	conversion.

By	defining	the	point	in	time	when	conversion	should	happen,	you	are	thinking
about	how	to	store	the	data.	But,	once	the	data	is	stored,	you	might	want	to	build
reports	on	top	of	it.	If	you	perform	conversion	in	the	main	currency,	then	the
reporting	problems	are	somewhat	mitigated.	However,	if	you	want	to	be	able	to
report	in	different	currencies,	then	you	might	need	to	store	transactions	in	EUR
and	report	them	in	USD,	Yen,	or	any	other	currency.	This	makes	it	necessary	to	be
able	to	perform	online	conversion—that	is,	conversion	of	currency	in	real-time
when	the	query	is	executed.
When	it	comes	to	currency	conversion,	you	need	to	spend	a	lot	of	time

understanding	exactly	what	the	requirements	are	because	the	resulting	data	models
are	very	different.	There	is	no	single	model	that	can	handle	all	the	possible
scenarios.	Moreover,	from	a	performance	point	of	view,	currency	conversion	is
very	challenging.	This	is	probably	the	main	reason	you	should	try	to	keep	it	as
simple	as	possible,	by	avoiding	handling	models	that	are	more	complex	than
strictly	needed.

Multiple	source	currencies,	single	reporting	currency
Suppose	the	source	data	contains	orders	in	different	currencies,	and	you	want	to
produce	a	report	containing	information	with	a	single	type	of	currency.	For
example,	you	collect	orders	in	EUR,	USD,	and	other	currencies,	but,	to	be	able	to
compare	sales,	you	want	to	convert	them	all	to	a	single	currency.
Let	us	start	with	a	quick	look	at	the	model	we	use	for	this	scenario,	shown	in

Figure	11-1.	Sales	has	a	relationship	with	Currency,	which	indicates	that	each	sale
is	recorded	with	the	currency	in	which	it	happened.

FIGURE	11-1	In	this	model,	sales	are	recorded	with	different	currencies	and
sliced	by	currency.

The	first	question	with	such	a	model	is,	what	is	the	meaning	of	Unit	Price,	Unit
Discount,	and	all	the	other	currency	columns	stored	in	Sales?	If	you	saved	the
values	in	the	original	currency,	as	is	likely	the	case,	then	you	are	in	trouble	as
soon	as	you	author	a	simple	calculation	like	the	sales	amount.	If	you	use	a	formula
like	the	following	one,	the	result	might	not	be	what	you	expected:
Click	here	to	view	code	image

Sales	Amount	:=	SUMX	(Sales,	Sales[Quantity]	*

Sales[Net	Price])

We	used	the	same	formula	for	Sales	Amount	in	most	of	this	book,	but	when	used
with	currencies,	it	stops	working.	Figure	11-2	shows	the	result	of	a	simple	report
based	on	this	formula,	where	the	totals	at	the	column	level	make	no	sense.	This	is
because	they	are	summing	values	in	different	currencies,	which	leads	to	useless
numbers.

FIGURE	11-2	In	this	report,	the	total	at	the	column	level	is	summing	different
currencies.

The	report	correctly	shows	the	values	and	the	row	totals	because	they	refer	to	a
single	currency.	When	it	comes	to	the	column	level,	however,	these	numbers	are	a
nonsense.	You	simply	cannot	sum	together	Euro,	Danish	Krone,	and	US	Dollar
unless	you	perform	a	conversion	and	define	a	target	currency	to	use	for	the	sum.
Because	of	the	presence	of	data	in	different	currencies,	you	should	protect	these

measures	from	showing	meaningless	values.	Use	the	HASONEVALUE	function	to
guarantee	that	the	result	is	returned	if	and	only	if	a	single	currency	has	been
selected.	In	the	following	code,	we	cover	this	first	need:
Click	here	to	view	code	image

Sales	Amount	:=

IF	(

				HASONEVALUE	(Currency[Currency]),

				SUMX	(Sales,	Sales[Quantity]	*	Sales[Net	Price])

)

Using	this	new	measure,	the	report	loses	the	total	on	the	columns,	where	the
sum	should	not	be	displayed,	as	shown	in	Figure	11-3.

FIGURE	11-3	By	protecting	the	code,	you	avoid	showing	the	totals	when	they
cannot	be	computed.

Even	without	the	totals	at	the	column	level,	this	report	is	not	very	useful.	A
report	is	generally	used	to	compare	numbers,	but	the	values	shown	in	this	table
cannot	simply	be	compared.	It	would	be	even	worse	to	build	a	chart	on	top	of	this
data	because,	at	that	point,	it	would	seem	natural	to	do	a	comparison.	If	you	need
to	compare	these	values,	then	you	need	to	either	use	the	currency	as	a	filter	and
then	slice	by	some	other	column	or	normalize	all	the	values	to	a	common	currency.
The	easiest	way	to	do	this	is	to	create	a	calculated	column	in	the	Sales	table

that	computes	the	amount	in	the	currency	you	want	to	use	for	your	reports.	For
now,	let	us	make	things	simple	and	imagine	that	we	want	to	produce	reports	in
USD.	You	can	create	a	calculated	column	in	Sales	that	computes	the	rate	to	USD
of	the	current	day	for	the	current	currency.	In	the	demo,	we	used	the	following
code,	which	you	might	need	to	adapt	for	your	scenario:
Click	here	to	view	code	image

RateToUsd	=

LOOKUPVALUE(

				ExchangeRate[AverageRate],

				ExchangeRate[CurrencyKey],	Sales[CurrencyKey],

				ExchangeRate[DateKey],	RELATED	('Date'[Date])

)

Once	RateToUSD	is	in	place,	you	can	use	it	to	compute	Sales	Amount
USD	by	simply	multiplying	the	value	of	the	sales	amount	by	the	exchange	rate.
Thus,	Sales	Amount	USD	is	computed	by	the	following	DAX	code:

Click	here	to	view	code	image

Sales	Amount	USD	=

SUMX	(

				Sales,

				Sales[Quantity]	*	DIVIDE	(Sales[Net	Price],	Sales[RateToUsd])

)

With	the	measure,	you	can	now	show	a	report	that	lets	you	compare	sales	in
different	years	and	currencies	with	meaningful	values,	as	shown	in	Figure	11-4.

FIGURE	11-4	When	values	are	converted	to	the	report	currency,	you	can	safely
compare	them	and	produce	totals.

This	technique	is	pretty	simple	to	implement.	The	logic	about	the	exact	date
when	the	conversion	should	happen	is	configured	in	the	calculated	column.	If	you
have	different	needs,	you	can	change	that	definition	and	obtain	the	right	result.	For
example,	if	you	need	to	get	the	exchange	rate	of	the	day	after,	you	can	simply
modify	the	LOOKUPVALUE	function	to	search	for	that	exchange	rate.	The	main
limitation	of	this	technique	is	that	it	works	fine	if	you	have	a	single	currency	for
the	reports.	If	you	have	many	of	them,	you	will	need	a	separate	measure	(and
calculated	column)	for	each	of	them.

	Note

The	Sales	Amount	USD	measure	has	a	format	string	that	shows
a	dollar	symbol	in	front	of	it.	The	format	string	of	a	measure	is	static,
meaning	you	cannot	change	it	dynamically.	The	technique	of	using	a
separate	measure	for	each	reporting	currency	is	widely	adopted,	and

we	suggest	you	follow	it	to	make	the	user	experience	better.

Before	leaving	this	first	scenario,	it	is	worth	noting	that	the	number	it	computes
is	not	completely	correct.	In	fact,	if	you	compare	Figure	11-4	and	Figure	11-3,	you
will	see	that	the	value	for	2009	is	lower	in	Figure	11-4.	(This	is	evident	if	you
look	at	the	US	Dollar	row.)	When	complex	calculations	are	involved,	as	in	this
case,	spotting	errors	is	not	trivial.	In	fact,	the	problem	is	evident	in	the	US	Dollar
row,	which	should	always	convert	one-to-one.	However,	it	is	also	present	in	all
the	other	currencies,	although	much	less	evident.	Double-checking	your	values	is
always	a	good	practice.	So	where	is	the	issue?	If	you	look	at	the	data	in	the	Sales
table,	you	will	notice	several	hundreds	of	rows	that	have	a	blank	RateToUsd
column,	as	shown	in	Figure	11-5.	Here,	we	sorted	by	RateToUsd	to	show	the
blank	rows	first.

FIGURE	11-5	The	RateToUsd	column	is	empty	for	several	rows.

The	problem	here	is	that	the	exchange	rate	is	not	available	for	all	the	dates,	so
the	LOOKUPVALUE	function	does	not	return	any	number.	As	with	many	other
scenarios	related	to	currency	conversion,	you	need	to	define	what	to	do	in	such	a
case.	If	the	conversion	rate	for	a	given	day	is	not	available,	then	the	numbers
reported	are	wrong,	and	you	cannot	afford	such	a	scenario.	In	the	following	code,
we	decided	to	take	the	latest	conversion	ratio	if	the	current	day’s	rate	is	not
available:
Click	here	to	view	code	image

RateToUsd	=

LOOKUPVALUE	(

				ExchangeRate[AverageRate],

				ExchangeRate[CurrencyKey],	Sales[CurrencyKey],

				ExchangeRate[DateKey],	CALCULATE	(

								MAX	('ExchangeRate'[DateKey]),

								'ExchangeRate'[DateKey]	<=	EARLIER	(Sales[OrderDateKey]),

								ExchangeRate[CurrencyKey]	=	EARLIER	(Sales[CurrencyKey]),

								ALL	(ExchangeRate)

)

)

With	the	new	RateToUsd	in	place,	the	report	shows	meaningful	values,	as
shown	in	Figure	11-6.

FIGURE	11-6	With	the	new	calculated	column,	conversion	happens	smoothly	for
all	the	periods.

Single	source	currency,	multiple	reporting	currencies
Now	that	you	learned	about	converting	multiple	currencies	into	a	single	currency,
we	can	go	further	and	analyze	a	different	scenario,	where	you	have	a	single
currency	in	the	source	data	and	you	want	to	be	able	to	produce	reports	in	a
different	currency.
As	with	the	previous	scenario,	you	must	make	some	decisions	in	this	case,	too.

For	example,	if	you	collected	an	order	in	USD	on	the	first	of	January	2005	and
you	prepare	a	report	in	December	2006,	what	exchange	rate	should	you	use?	You
can	choose	between	the	exchange	rate	that	was	active	at	the	moment	of	the	order

or	the	latest	available	exchange	rate.	The	model,	in	both	cases,	is	the	same,	even	if
the	DAX	code	to	compute	the	values	is	different.	Thus,	you	have	the	option	to
develop	both	calculations	in	the	same	model.	The	model	is	shown	in	Figure	11-7.

FIGURE	11-7	This	is	the	data	model	to	convert	a	single	currency	in	multiple
reported	currencies.

The	model	looks	very	similar	to	the	one	shown	in	Figure	11-1,	but	there	are
some	important	differences.	First,	there	are	no	longer	any	relationships	between
Sales	and	Currency.	This	is	because	all	the	sales	are	now	recorded	in	USD.	(We
decided	to	use	this	currency	for	this	demo,	but	it	might	be	any	other	currency.)
Thus,	the	currency	does	not	filter	Sales.	This	time,	the	Currency	table	is	used	to
define	the	reporting	currency.	In	other	words,	even	if	the	sales	are	stored	in	USD,
by	choosing	a	different	currency,	the	user	should	be	able	to	see	the	values	in	any
other	currency.
You	want	to	compute	the	value	in	a	dynamic	way.	That	is,	you	want	the	user	to

be	able	to	select	the	currency	at	report	time.	You	cannot	leverage	on	a	calculated
column,	however.	Instead	you	must	author	some	more	complex	DAX	code	in	a
measure.	The	named	measure	needs	to	do	the	following:

1.	Check	that	a	single	currency	is	selected	to	avoid	the	grand-total	issue	we

encountered	in	the	previous	section.	As	you	might	recall,	the	grand	total	for
a	report	with	multiple	currencies	is	not	accurate,	and	we	do	not	want	to
display	it.

2.	Iterate	on	each	date	in	the	current	selection;	compute	the	value	of	sales	and
the	currency	rate	for	each	date;	and	make	the	conversion	in	the	desired
currency.	This	iteration	is	necessary	because	the	exchange	rate	changes
every	day.	You	cannot	compute	the	conversion	until	you	fix	the	day,	which	is
what	the	iteration	does.

The	second	point	is	further	complicated	by	the	fact	that,	on	some	days,	the
exchange	rate	might	not	be	available.	Thus,	you	will	need	to	search	for	the	latest
exchange	rate	every	day.	Most	of	the	time,	this	process	will	lead	you	to	the
exchange	rate	of	that	day.	On	some	days,	however,	you	will	need	to	use	a	prior
date.	The	following	code,	although	somewhat	complex,	accomplishes	all	these
steps:
Click	here	to	view	code	image

Sales	Converted	=

IF	(

				HASONEVALUE	('Currency'[Currency]),

				SUMX	(

								VALUES	('Date'[Date]),

								VAR	CurrentDate	=	'Date'[Date]

								VAR	LastDateAvailable	=

												CALCULATE	(

																MAX	('ExchangeRate'[DateKey]),

																'ExchangeRate'[DateKey]	<=	CurrentDate,

																ALL	('Date')

)

								VAR	Rate	=

												CALCULATE	(

																VALUES	(ExchangeRate[AverageRate]),

																ExchangeRate[DateKey]	=	LastDateAvailable,

																ALL	('Date')

)

								RETURN

												[Sales	Amount	USD]	*	Rate

)

)

Using	this	measure,	you	can	build	reports	that,	starting	from	a	single	USD
currency,	generate	results	in	many	different	currencies,	as	shown	in	Figure	11-8.

FIGURE	11-8	In	this	report,	the	value	in	the	Currency	column	is	the	reporting
currency.	All	orders	are	converted	to	the	given	currency.

Unfortunately,	the	formula	is	far	from	being	simple	and	readable.	This	is
problematic	for	several	reasons,	not	least	being	the	fact	that	you	might	need	the
same	code	snippet	in	other	measures	to	(for	example)	convert	the	cost	or	the
revenues	in	a	similar	way.
The	most	complex	part	is	the	search	for	the	correct	exchange	rate.	As	is	often

the	case,	your	best	option	here	is	to	work	at	the	data-model	level.	This	time,
instead	of	changing	the	model,	you	can	build	a	new	ExchangeRate	table	that
provides	an	exchange	rate	for	any	date	in	the	Sales	table	by	searching	for	the	latest
exchange	rate	for	that	date,	the	same	way	you	do	in	the	measure.	In	doing	so,	you
do	not	completely	remove	the	complexity	from	the	model.	Instead	you	isolate	the
complexity	in	a	calculated	table	to	be	able	to	use	it	whenever	needed.	In	addition,
isolating	this	calculation	in	a	calculated	table	greatly	improves	the	measure
behavior	because	the	slow	process	in	the	formula	is	the	search	for	the	correct
exchange	rate.

	Note

This	option	is	available	only	if	you	are	working	with	SQL	Server
Analysis	Services	2016	or	Power	BI	because	it	makes	use	of
calculated	tables.	If	you	are	using	a	version	of	DAX	that	does	not
support	calculated	tables,	then	you	need	to	perform	a	similar
operation	in	the	ETL	process.

The	following	code	generates	the	ExchangeRateFull	table,	which	contains	the
exchange	rate	for	every	pair	of	date	and	currency:

Click	here	to	view	code	image

ExchangeRateFull	=

ADDCOLUMNS	(

				CROSSJOIN	(

								SELECTCOLUMNS	(

												CALCULATETABLE	(DISTINCT	('Date'[Date]),	Sales),

												"DateKey",	'Date'[Date]

),

								CALCULATETABLE	(DISTINCT	(Currency[CurrencyKey]),	ExchangeRate)

),

				"AverageRate",

				VAR	CurrentDate	=	[DateKey]

				VAR	CurrentCurrency	=	[CurrencyKey]

				VAR	LastDateAvailable	=

								CALCULATE	(

												MAX	('ExchangeRate'[DateKey]),

												'ExchangeRate'[DateKey]	<=	CurrentDate,

												ALLNOBLANKROW	(ExchangeRate[DateKey])

)

				RETURN

								CALCULATE	(

												DISTINCT	(ExchangeRate[AverageRate]),

												ExchangeRate[CurrencyKey]	=	CurrentCurrency,

												ExchangeRate[DateKey]	=	LastDateAvailable

)

)

With	this	new	calculated	table	in	place,	the	model	is	very	similar	to	the
previous	one,	as	shown	in	Figure	11-9.

FIGURE	11-9	The	new	ExchangeRateFull	table	took	the	place	of	the	previous
ExchangeRate	table.

Moreover,	the	code	of	the	measure	becomes	much	simpler	to	write,	as	you	can
see	in	the	following	measure	definition:
Click	here	to	view	code	image

Sales	Converted	=

IF	(

				HASONEVALUE	('Currency'[Currency]),

				SUMX	(

								VALUES	('Date'[Date]),

								[Sales	Amount	USD]	*	CALCULATE	(VALUES	(ExchangeRateFull[AverageRate]))

)

)

As	mentioned,	the	complexity	is	not	gone.	We	only	moved	it	into	a	calculated
table,	thus	isolating	it	from	the	measures.	The	advantage	of	this	approach	is	that
you	will	spend	less	time	debugging	and	writing	the	measures	(and	you	might	have

plenty	of	them).	Moreover,	because	the	calculated	table	is	computed	at	data
refresh	time	and	stored	in	the	model,	the	overall	performance	will	be	much	better.
In	this	case,	we	simplified	the	code	not	by	changing	the	model	structure;	the	last

model	is	identical	to	the	previous	one.	Instead,	we	changed	the	content	of	the
table,	which	forced	the	relationship	to	be	at	the	correct	granularity.

Multiple	source	currencies,	multiple	reporting	currencies
If	your	model	stores	orders	in	multiple	currencies	and	you	want	to	be	able	to
report	in	any	currency,	then	you	face	the	most	complex	scenario.	In	reality,
however,	it	is	not	much	more	complex	than	the	one	with	multiple	reporting
currencies.	This	is	because,	as	you	might	expect,	complexity	comes	from	the	need
to	perform	a	currency	conversion	at	query	time	by	using	measures	and
precomputed	tables.	Moreover,	in	the	case	of	multiple	currencies	on	both	sides
(storage	and	reporting),	the	exchange	rate	table	needs	to	contain	many	more	rows
(one	row	for	each	pair	of	currencies	for	every	day),	or	you	will	need	to	compute
the	exchange	rate	in	a	dynamic	way.
Let	us	start	by	looking	at	the	data	model	shown	in	Figure	11-10.

FIGURE	11-10	The	data	model	includes	multiple	source	and	target	currencies.

Note	the	following	things	about	this	model:
	There	are	two	currency	tables:	Source	Currency	and	Report	Currency.
Source	Currency	is	used	to	slice	the	currency	that	records	the	sales,	whereas
Report	Currency	is	used	to	slice	the	currency	used	in	the	report.
	The	ExchangeRates	table	now	contains	both	the	source	and	the	target
currency	because	it	lets	you	convert	any	currency	into	any	other	currency.	It
is	worth	noting	that	the	ExchangeRates	table	can	be	computed	(through	DAX
code)	from	the	original	table	that	converted	every	currency	to	USD.

The	following	code	generates	the	ExchangeRates	table:
Click	here	to	view	code	image

ExchangeRates	=

				SELECTCOLUMNS	(

								GENERATE	(

												ExchangeRateFull,

												VAR	SourceCurrencyKey	=	ExchangeRateFull[CurrencyKey]

												VAR	SourceDateKey	=	ExchangeRateFull[DateKey]

												VAR	SourceAverageRate	=	ExchangeRateFull[AverageRate]

												RETURN

																SELECTCOLUMNS	(

																				CALCULATETABLE	(

																								ExchangeRateFull,

																								ExchangeRateFull[DateKey]	=	SourceDateKey,

																								ALL	(ExchangeRateFull)

),

																				"TargetCurrencyKey",	ExchangeRateFull[CurrencyKey]	+	0,

																				"TargetExchangeRate",	ExchangeRateFull[AverageRate]	+	0

)

),

								"DateKey",	ExchangeRateFull[DateKey],

								"SourceCurrencyKey",	ExchangeRateFull[CurrencyKey],

								"SourceExchangeRate",	ExchangeRateFull[AverageRate],

								"TargetCurrencyKey",	[TargetCurrencyKey],

								"TargetExchangeRate",	[TargetExchangeRate],

								"ExchangeRate",	ExchangeRateFull[AverageRate]	*	[TargetExchangeRate]

)

This	basically	performs	a	cross-join	of	the	ExchangeRateFull	table	with	itself.
First,	it	gathers	the	exchange	rate	to	USD	of	both	currencies,	on	the	same	date.
Then	it	multiplies	the	exchange	rates	to	obtain	the	correct	exchange	rate	of	any
currency	with	any	other	one.
This	table	is	much	larger	than	the	original	one	(we	grew	from	25,166	rows	in

ExchangeRateFull	to	624,133	rows	in	the	final	table),	but	it	lets	us	create
relationships	in	an	easy	way.	The	code	can	be	written	even	without	the	creation	of
this	table,	but	it	is	utterly	complicated.
When	it	comes	to	writing	the	code	that	computes	the	amount	sold,	you	basically

mix	the	two	previous	scenarios	into	a	single	one.	You	must	slice	sales	by	date	and
currency	to	obtain	a	set	of	sales	that	share	the	same	exchange	rate.	Then	you	need
to	search,	in	a	dynamic	way,	for	the	current	exchange	rate,	taking	into	account	the
selected	report	currency,	as	in	the	following	expression:
Click	here	to	view	code	image

Sales	Amount	Converted	=

IF	(

				HASONEVALUE	('Report	Currency'[Currency]),

				SUMX	(

								SUMMARIZE	(Sales,	'Date'[Date],	'Source	Currency'[Currency]),

								[Sales	Amount]	*	CALCULATE	(VALUES	(ExchangeRates[ExchangeRate]))

)

)

Using	this	model,	you	can,	for	example,	report	orders	in	different	currencies	in
both	EUR	and	USD	with	a	currency	conversion	on	the	fly.	In	the	report	shown	in
Figure	11-11,	for	example,	currency	conversion	happens	at	the	date	of	the	order.

FIGURE	11-11	The	values	are	converted	in	EUR	and	USD	from	the	original
currency.

Conclusions
Currency	conversion	requires	models	of	increasing	complexity	depending	on	the
requirements.	The	following	main	points	were	made	in	this	chapter:

	You	can	achieve	simple	conversion	from	multiple	currencies	to	a	single
currency	(or	a	very	small	number	of	different	currencies)	through	simple

calculated	columns.
	Converting	to	multiple	reporting	currencies	requires	a	bit	more	complex
DAX	code	and	some	adjustments	on	the	data	model	because	you	can	no
longer	leverage	a	calculated	column.	The	conversion	needs	to	happen	in	a
more	dynamic	way.
	The	dynamic	conversion	code	can	be	made	simpler	by	ensuring	that	the
exchange	rate	table	contains	all	the	needed	dates,	which	you	can	achieve	by
using	a	simple	calculated	table.
	The	most	complex	scenario	is	when	you	have	multiple	source	currencies
and	multiple	reporting	currencies.	In	that	case,	you	need	to	mix	the	previous
techniques	and	create	two	currency	tables:	one	for	the	source	currency	and
another	for	the	reporting	currency.

Appendix	A.	Data	modeling	101

The	goal	of	this	appendix	is	to	explain	the	data-modeling	concepts	that	are	used
throughout	the	book	and	that	are	often	discussed	in	articles,	blog	posts,	and	books.
It	is	not	an	appendix	to	read	from	the	beginning	to	the	end.	Instead,	you	can	take	a
quick	look	at	this	appendix	if,	while	reading	the	book,	you	find	a	term	or	a	concept
that	is	not	clear	or	you	want	to	refresh	your	memory.	Thus,	the	appendix	does	not
have	a	real	flow.	Each	topic	is	treated	in	its	own	self-contained	section.
Moreover,	we	do	not	want	this	to	be	a	complex	appendix.	We	provide	only	the
basic	information	about	the	topics.	An	in-depth	discussion	of	them	is	beyond	the
scope	of	this	book.

Tables
A	table	is	a	container	that	holds	information.	Tables	are	divided	into	rows	and
columns.	Each	row	contains	information	about	an	individual	entity,	whereas	each
cell	in	a	row	contains	the	smallest	piece	of	information	represented	in	a	database.
For	example,	a	Customer	table	might	contain	information	about	all	your
customers.	One	row	contains	all	the	information	about	one	customer,	and	one
column	might	contain	the	name	or	the	address	of	all	the	customers.	A	cell	might
contain	the	address	for	one	customer.
When	building	your	model,	you	must	think	in	these	terms	to	avoid	some

common	pitfalls	that	can	make	the	analysis	of	your	model	a	nightmare.	Imagine,
for	example,	that	you	decide	to	store	information	about	an	order	in	two	rows	of
the	same	table.	In	one	row,	you	store	the	amount	ordered,	along	with	its	order
date.	In	the	other	row,	you	store	the	amount	shipped,	again	with	its	shipment	date.
By	doing	so,	you	split	one	entity	(the	order)	into	two	rows	of	the	same	table.	An
example	is	shown	in	Figure	A-1.

Figure	A-1	In	this	table,	information	about	a	single	order	is	divided	into	multiple
rows.

This	makes	the	table	much	more	complex.	Computing	even	a	simple	value	like
the	order	amount	becomes	more	complex	because	a	single	column	(Amount)
contains	different	kinds	of	information.	You	cannot	simply	sum	the	amount;	you
always	need	to	apply	a	filter.	The	problem	with	this	model	is	that	you	have	not
designed	it	the	right	way.	Because	the	individual	order	information	is	split	into
several	rows,	it	is	difficult	to	perform	any	kind	of	calculation.	For	example,
computing	the	percentage	of	goods	already	shipped	for	every	customer	becomes	a
complex	operation	because	you	need	to	build	code	to	do	the	following:

1.	Iterate	over	each	order	number.
2.	Aggregate	the	amount	ordered	(if	it	is	in	multiple	lines),	filtering	only	the
rows	in	which	the	Type	column	equals	Order.

3.	Aggregate	the	amount	shipped,	this	time	filtering	only	the	rows	in	which
Type	equals	Ship.

4.	Compute	the	percentage.
In	the	previous	example,	the	error	is	that	if	an	order	is	an	entity	in	your	model,

then	it	needs	to	have	its	own	table	where	all	the	values	can	be	aggregated	in	a
simple	way.	If	you	also	need	to	track	individual	transactions	for	shipments,	then
you	can	build	a	Shipments	table	that	contains	only	shipments.	Figure	A-2	shows
you	the	correct	model	for	this	dataset.

Figure	A-2	The	correct	representation	of	orders	and	shipments	requires	two

tables.

In	this	example,	we	only	track	shipments.	However,	you	might	have	a	more
generic	table	that	tracks	the	transactions	of	the	order	(orders,	shipments,	and
returns).	In	that	case,	it	is	fine	to	store	both	types	of	transactions	in	the	same	table
by	tagging	them	with	an	attribute	that	identifies	the	type	of	operation.	It	is	also	fine
to	store	different	types	of	the	same	entity	(transactions)	in	the	same	table.
However,	it	is	not	good	to	store	different	entities	(orders	and	transactions)	in	the
same	table.

Data	types
When	you	design	a	model,	each	column	has	a	data	type.	The	data	type	is	the	type
of	content	in	the	column.	The	data	type	can	be	integer,	string,	currency,	floating
point,	and	so	on.	There	are	many	data	types	that	you	can	choose	from.	The	data
type	of	a	column	is	important	because	it	affects	its	usability,	the	functions	you	can
use	on	it,	and	the	formatting	options.	In	fact,	the	data	type	of	a	column	is	the	format
used	internally	by	the	engine	to	store	the	information.	In	contrast,	the	format	string
is	only	pertinent	to	how	the	UI	represents	the	information	in	a	human-readable
form.
Suppose	you	have	a	column	that	should	contain	the	quantity	shipped.	In	that

case,	it	is	likely	that	an	integer	is	a	good	data	type	for	it.	However,	in	a	column
that	needs	to	store	sales	amounts,	an	integer	is	no	longer	a	good	option	because
you	will	need	to	store	decimal	points,	too.	In	such	a	case,	currency	is	the	right
data	type	to	use.
When	using	plain	Excel,	each	cell	can	contain	values	of	any	data	type.	When

using	the	tabular	data	model,	however,	the	data	type	is	defined	at	the	column	level.
This	means	all	the	rows	in	your	table	will	need	to	store	the	same	data	type	in	that
column.	You	cannot	have	mixed	data	types	for	one	column	in	a	table.

Relationships
When	your	model	contains	multiple	entities,	as	is	generally	the	case,	you	store
information	in	multiple	tables	and	link	them	through	relationships.	In	a	tabular
model,	a	relationship	always	links	two	tables,	and	it	is	based	on	a	single	column.
The	most	common	representation	of	a	relationship	is	an	arrow	that	starts	from

the	source	table	and	goes	to	the	target	table,	as	shown	in	Figure	A-3.

Figure	A-3	In	this	model,	there	are	four	tables	that	are	linked	through
relationships.

When	you	define	a	relationship,	there	is	always	a	one	side	and	a	many	side.	In
the	sample	model,	for	each	product,	there	are	many	sales,	and	for	each	sale	there
is	exactly	one	product.	Thus,	the	Product	table	is	on	the	one	side,	whereas	Sales	is
on	the	many	side.	The	arrow	always	goes	from	the	many	side	to	the	one	side.
In	different	versions	of	Power	Pivot	for	Excel	and	in	Power	BI,	the	user

interface	uses	different	visualizations	for	relationships.	However,	in	the	latest
versions	of	both	Excel	and	Power	BI,	the	engine	draws	a	line	that	tags	the	ends	of
the	line	with	a	1	(one)	or	*	(star)	to	identify	the	one	or	the	many	side	of	the
relationship.	In	Power	BI	Desktop,	you	also	have	the	option	of	creating	one-to-one
relationships.	A	one-to-one	relationship	is	always	bidirectional	because	for	each
row	of	a	table,	there	can	be	only	zero	or	one	rows	in	the	other	table.	Thus,	in	this
special	case,	there	is	no	many	side	of	the	relationship.

Filtering	and	cross-filtering
When	you	browse	your	model	through	a	PivotTable	or	by	using	Power	BI,
filtering	is	very	important.	In	fact,	it	is	the	foundation	of	most—if	not	all—
calculations	in	a	report.	When	using	the	DAX	language,	the	rule	is	very	simple:
The	filter	always	moves	from	the	one	side	of	a	relationship	to	the	many	side.	In
the	user	interface,	this	is	represented	by	an	arrow	in	the	middle	of	the	relationship

that	shows	how	the	filter	propagates	through	the	relationship,	as	shown	in	Figure
A-4.

Figure	A-4	The	small	arrow	inside	the	line	of	the	relationship	represents	the
direction	of	the	filter.

Thus,	whenever	you	filter	Date,	you	filter	Sales,	too.	This	is	why,	in	a
PivotTable,	you	can	easily	slice	the	sales	amount	by	the	calendar	year:	a	filter	on
Date	directly	translates	to	a	filter	on	Sales.	The	opposite	direction,	on	the	other
hand,	does	not	work	by	default.	A	filter	on	Sales	will	not	propagate	to	Date	unless
you	instruct	the	data	model	to	do	so.	Figure	A-5	shows	you	a	graphical
representation	of	how	the	filter	is	propagated	by	default.

Figure	A-5	The	large	arrow	indicates	how	the	filter	is	being	propagated	when
unidirectional	filtering	is	on.

You	can	change	the	direction	of	the	filter	propagation	(known	as	cross-filter
direction)	by	modifying	the	setting	of	the	relationship.	In	Power	BI,	for	example,
this	is	done	by	double-clicking	on	the	relationship	itself.	This	opens	the	Edit
Relationship	dialog	box,	shown	in	Figure	A-6.

Figure	A-6	The	Edit	Relationship	dialog	box	lets	you	modify	the	cross-filter
direction.

By	default,	the	cross-filter	direction	is	set	to	Single—that	is,	from	one	to	many.
If	needed,	you	can	change	it	to	Both	so	that	the	filter	also	propagates	from	the
many	side	to	the	one	side.	Figure	A-7	shows	a	graphical	representation	of	how	the
filter	propagates	when	you	set	it	to	be	bidirectional.

Figure	A-7	When	in	bidirectional	mode,	the	filter	propagates	both	ways.

This	feature	is	not	available	in	Power	Pivot	for	Excel	2016.	If	you	need	to
activate	bidirectional	filtering	in	Power	Pivot	for	Excel,	you	must	activate	it	on
demand	by	using	the	CROSSFILTER	function,	as	in	the	following	example,	which
works	on	the	model	shown	in	Figure	A-8:
Click	here	to	view	code	image

Num	of	Customers	=

CALCULATE	(

				COUNTROWS	(Customer),

				CROSSFILTER	(Sales[CustomerKey],	Customer[CustomerKey],	BOTH)

)

Figure	A-8	Both	relationships	are	set	to	their	default	mode,	which	is
unidirectional.

The	CROSSFILTER	function	enables	bidirectional	filtering	for	the	duration	of
the	CALCULATE	statement.	During	the	evaluation	of	COUNTROWS	(
Customer),	the	filter	will	move	from	Sales	to	Customer	to	show	only	the
customers	who	are	referenced	in	Sales.
This	technique	is	very	convenient	when	you	need,	for	example,	to	compute	the

number	of	customers	who	bought	a	product.	In	fact,	the	filter	moves	naturally	from
Product	to	Sales.	Then,	however,	you	need	to	use	bidirectional	filtering	to	let	it
flow	to	Customer	by	passing	through	Sales.	For	example,	Figure	A-9	shows	two
calculations.	One	has	bidirectional	filtering	activated	and	the	other	uses	the
default	filter	propagation.

Figure	A-9	The	two	measures	differ	only	for	the	direction	of	the	cross-filter.	The
results	are	completely	different.

The	definitions	of	the	two	measures	are	as	follows:
Click	here	to	view	code	image

CustomerCount	:=	COUNTROWS	(Customer)

CustomerFiltered	:=

CALCULATE	(

				COUNTROWS	(Customer),

				CROSSFILTER	(Customer[CustomerKey],	Sales[CustomerKey],	BOTH)

)

You	can	see	that	CustomerCount	uses	the	default	filtering.	Thus,	Product	filters
Sales,	but	Sales	does	not	filter	Customer.	In	the	second	measure,	on	the	other
hand,	the	filter	flows	from	Product	to	Sales	and	then	reaches	Customer,	so	the
formula	counts	only	the	customers	who	bought	one	of	the	filtered	products.

Different	types	of	models
In	a	typical	model,	there	are	many	tables	linked	through	relationships.	These
tables	can	be	classified	using	the	following	names,	based	on	their	usage:

	Fact	table	A	fact	table	contains	values	that	you	want	to	aggregate.	Fact
tables	typically	store	events	that	happened	in	a	specific	point	in	time	and
that	can	be	measured.	Fact	tables	are	generally	the	largest	tables	in	the
model,	containing	tens	of	millions	or	even	hundreds	of	millions	of	rows.
Fact	tables	normally	store	only	numbers—either	keys	to	dimensions	or
values	to	aggregate.
	Dimension	A	dimension	is	useful	to	slice	facts.	Typical	dimensions	are
products,	customers,	time,	and	categories.	Dimensions	are	usually	small
tables,	with	hundreds	or	thousands	of	rows.	They	tend	to	have	many
attributes	in	the	form	of	strings	because	their	main	purpose	is	to	slice
values.
	Bridge	tables	Bridge	tables	are	used	in	more	complex	models	to	represent
many-to-many	relationships.	For	example,	a	customer	who	might	belong	to
multiple	categories	can	be	modeled	with	a	bridge	table	that	contains	one
row	for	each	of	the	categories	of	the	customer.

Star	schema
When	you	look	at	the	diagram	of	your	model,	if	it	is	built	based	only	on	fact	tables
and	dimensions,	you	can	put	the	fact	table	in	the	center	with	all	the	dimensions
around	it—an	arrangement	known	as	a	star	schema,	as	shown	in	Figure	A-10.

Figure	A-10	A	star	schema	emerges	if	you	put	the	fact	table	in	the	middle	and	all
the	dimensions	around	it.

Star	schemas	have	a	lot	of	great	features:	They	are	fast	and	easy	to	understand
and	manage.	As	you	read	in	this	book,	you	will	see	that	they	are—with	good
reason—the	foundation	of	most	analytical	databases.	Sometimes,	however,	you
need	to	structure	your	model	in	different	ways,	the	most	common	of	which	are
described	in	the	next	sections.

Snowflake	schema
Sometimes,	a	dimension	is	linked	to	another	dimension	that	further	classifies	it.
For	example,	products	might	have	categories,	and	you	might	decide	to	store	the
categories	in	a	separate	table.	As	another	example,	stores	can	be	divided	in
business	units,	which	again,	you	might	decide	to	store	in	a	separate	table.	As	an
example,	Figure	A-11	shows	products	that,	instead	of	having	the	category	name	as
a	column,	store	a	category	key,	which,	in	turn,	refers	to	the	Category	table.

Figure	A-11	Categories	are	stored	in	their	own	table,	and	Product	refers	to	that
table.

If	you	use	such	a	schema,	both	product	categories	and	business	units	are	still
dimensions,	but	instead	of	being	related	directly	to	the	fact	table,	they	are	related
through	an	intermediate	dimension.	For	example,	the	Sales	table	contains	the
ProductKey	column,	but	to	obtain	the	category	name,	you	must	reach	Product	from
Sales	and	then	Category	from	Product.	In	such	a	case,	you	obtain	a	different
schema,	which	is	known	as	a	snowflake,	as	shown	in	Figure	A-12.

Figure	A-12	A	snowflake	is	a	star	schema	with	additional	dimensions	linked	to
the	original	dimensions.

Dimensions	are	not	related	among	themselves.	For	example,	you	can	think	of
the	relationship	between	Category	and	Sales	as	a	direct	relationship,	but	it	is
passing	through	the	Store	table.	For	no	reason	is	a	relationship	allowed	to	link
Store	with	Geography.	In	such	a	case,	in	fact,	the	model	would	become	ambiguous
because	there	would	be	multiple	paths	from	Sales	to	Geography.
Snowflake	schemas	are	somewhat	common	in	the	business	intelligence	(BI)

world.	Apart	from	a	slight	degradation	of	performance,	they	are	not	a	bad	choice.
Nevertheless,	whenever	possible,	it	is	better	to	avoid	snowflakes	and	stick	to	the
more	standard	star	schema	because	the	DAX	code	tends	to	be	easier	to	develop
and	less	error-prone.

Models	with	bridge	tables
A	bridge	table	typically	lies	between	two	dimensions	to	create	many-to-many
relationships	between	the	dimensions.	For	example,	Figure	A-13	shows	how	an
individual	customer	might	belong	to	multiple	categories.	Marco	belongs	both	to
the	Male	and	Italian	categories,	whereas	Kate	belongs	only	to	the	Female
category.	If	you	have	a	scenario	like	this,	then	you	design	two	relationships
starting	from	the	bridge	and	reaching,	respectively,	Customer	and	Category.

Figure	A-13	A	bridge	table	lets	an	individual	customer	belong	to	different
categories.

When	your	model	contains	bridge	tables,	it	takes	a	new	shape	that	has	never
been	named	in	the	BI	community.	Figure	A-14	shows	an	example	where	we	added
the	capability	for	a	customer	to	belong	to	multiple	customer	categories.

Figure	A-14	A	bridge	table	links	two	dimensions,	but	it	is	different	from	a	regular
snowflake.

The	difference	between	the	regular	snowflake	schema	and	this	one	with	a
bridge	table	is	that	this	time,	the	relationship	between	Customer	Category	and
Sales	is	not	a	straight	relationship	that	passes	through	two	dimensions.	In	fact,	the
relationship	between	Customer	and	the	bridge	is	in	the	opposite	direction.	If	it
was	going	from	the	Customer	to	the	bridge,	then	it	would	have	been	a	snowflake.
Because	of	its	direction	(which	reflects	its	intended	usage)	it	becomes	a	many-to-

many	relationship.

Measures	and	additivity
When	you	define	a	measure,	an	important	concept	is	whether	the	measure	is
additive	or	not	against	a	specific	dimension.

Additive	measures
A	measure	is	said	to	be	additive	when	it	aggregates	by	using	a	simple	sum.	For
example,	the	amount	sold	is	additive	against	products,	meaning	that	the	total	sold
results	from	the	sum	of	sales	of	individual	products.	As	another	example,	Sales	is
additive	against	all	dimensions	because	the	total	sold	over	a	year	results	from	the
sum	of	the	sales	of	individual	days.

Non-additive	measures
There	is	another	category	of	calculations	that	is	known	as	non-additive.	Distinct
count,	for	example,	is	a	non-additive	calculation.	If	you	perform	a	distinct	count	of
the	product	sold,	then	the	distinct	count	over	one	year	is	not	the	sum	of	the	distinct
counts	over	individual	months.	The	same	applies	to	customers,	countries,	and	any
other	dimension	(apart	from	the	product).	Whenever	you	need	to	compute	a	non-
additive	measure,	you	must	perform	a	full	scan	of	the	table	for	each	level	of	the
hierarchy	that	you	are	browsing	because	you	cannot	aggregate	values	from	their
children.

Semi-additive	measures
The	third	category	of	calculations	is	semi-additive.	Semi-additive	measures	are
the	most	complex	measures	because	they	are	additive	against	some	dimensions
and	non-additive	against	others.	Typically,	the	dimension	that	acts	as	an	exception
is	time.	For	example,	a	Year-to-Date	calculation	is	non-additive	because	the	value
you	show	for	one	month	(for	example,	March)	is	not	the	sum	of	the	individual
days.	Instead	it	is	the	value	of	the	last	day	of	the	month.	Figure	A-15	shows	an
example	of	these	three	kinds	of	measures.

Figure	A-15	The	report	shows	the	three	types	of	additivity:	additive,	semi-
additive,	and	nonadditive.

DAX	offers	a	set	of	functions	to	handle	semi-additivity	over	time.	Functions
like	DATESYTD,	TOTALYTD,	LASTDATE,	and	CLOSINGBALANCEQUARTER
help	you	author	semi-additive	measures	when	time	is	the	non-additive	dimension.
Handling	semi-additivity	over	different	dimensions	requires	more	complex
FILTER	functions	because	there	is	no	predefined	function	to	handle	non-
additivity	on	dimensions	that	are	not	related	to	time.

Index

A
ABC	analysis	(segmentation),	196–200
active	events	(duration),	137–146
additive	measures

aggregating	snapshots,	114–117
fact	tables,	51
overview,	225

aggregating
detail	tables,	24–30
duration,	129–131
header	tables,	24–30
snapshots,	112–117
additive	measures,	114–117
semi-additive	measures,	114–117

ALL	function,	40
allocation	factor	(granularity),	185–186
ambiguity	(relationships),	17–19,	43–45
automatic	time	dimensions

creating,	58–60
Excel,	58–59
Power	BI	Desktop,	60

B
bidirectional	filtering	(cross-filtering)

CROSSFILTER	function,	43,	52,	98,	156–157,	159–160,	168,	220
detail	tables,	25–29
fact	tables,	40–43
granularity,	179–181
header	tables,	25–29
many-to-many	relationships,	155–157
overview,	218–221

BLANK	function,	182

bridge	tables
defined,	222
many-to-many	relationships,	167–170
orders	and	invoices	example,	52–53
overview,	224

budgets	(granularity),	175–177

C
CALCULATE	function,	37,	43,	77,	124,	156,	181,	193,	220
calculated	columns	(segmentation),	196–200
CALCULATETABLE	function,	81,	124
calculating

CALCULATE	function,	37,	43,	77,	124,	156,	181,	193,	220
calculated	columns	(segmentation),	196–200
CALCULATETABLE	function,	81,	124
time	intelligence,	68–69

calendars
fiscal	calendars,	69–71
weekly	calendars,	84–89

cascading	many-to-many	relationships,	158–161
CLOSINGBALANCELASTQUARTER	function,	226
columns

foreign	keys,	defined,	9
names,	20–21
primary	keys,	defined,	8–9
segmentation
calculated	columns,	196–200
multiple-column	relationships,	189–192

CONTAINS	function,	178
converting	currency

multiple	reporting	currencies
multiple	source	currencies,	212–214
single	source	currency,	208–212

multiple	source	currencies
multiple	reporting	currencies,	212–214

single	reporting	currency,	204–208
overview,	203–204
single	source	currency,	multiple	reporting	currencies,	208–212
single	reporting	currency,	multiple	source	currencies,	204–208

COUNTROWS	function,	75,	97,	220
creating

automatic	time	dimensions,	58–60
date	dimensions,	55–58

CROSSFILTER	function,	43,	52,	98,	156–157,	159–160,	168,	220
cross-filtering	(bidirectional	filtering)

CROSSFILTER	function,	43,	52,	98,	156–157,	159–160,	168,	220
detail	tables,	25–29
fact	tables,	40–43
granularity,	179–181
header	tables,	25–29
many-to-many	relationships,	155–157
overview,	218–221

currency	conversion
multiple	reporting	currencies
multiple	source	currencies,	212–214
single	source	currency,	208–212

multiple	source	currencies
multiple	reporting	currencies,	212–214
single	reporting	currency,	204–208

overview,	203–204
single	source	currency,	multiple	reporting	currencies,	208–212
single	reporting	currency,	multiple	source	currencies,	204–208

D
data

models.	See	data	models
temporal	data.	See	duration
types.	See	data	types

data	models
denormalization,	13–15,	18–19

detail	tables
aggregating,	24–30
bidirectional	filtering,	25–29
dimensions,	23–24
flattening,	30–32
granularity,	27–29
hierarchies,	23–24
orders	and	invoices	example,	49–50
overview,	23–24

flattening,	30–32
foreign	keys,	9
granularity.	See	granularity
header	tables
aggregating,	24–30
bidirectional	filtering,	25–29
dimensions,	23–24
flattening,	30–32
granularity,	27–29
hierarchies,	23–24
orders	and	invoices	example,	49–50
overview,	23–24

many-to-many	relationships.	See	many-to-many	relationships
normalization,	12–15,	18–19
OLTP,	13–15
one-to-many	relationships
defined,	9
fact	tables,	47–49

primary	keys,	8–9
relationships.	See	relationships
segmentation
ABC	analysis,	196–200
calculated	columns,	196–200
dynamic,	194–196
multiple-column	relationships,	189–192
overview,	189

static,	192–193
single	tables,	2–7
snowflake	schemas,	overview,	18–19,	222–223
source	tables,	9
star	schemas,	overview,	15–19,	222
tables.	See	tables
targets,	9

data	types	overview,	217
date.	See	also	time

calendars
fiscal	calendars,	69–71
weekly	calendars,	84–89

CLOSINGBALANCELASTQUARTER	function,	226
date	dimensions
creating,	55–58
multiple,	61–66
using	with	time	dimensions,	66–68

DATESINPERIOD	function,	69
DATESYTD	function,	68,	70–71,	226
duration
active	events,	137–146
aggregating,	129–131
formula	engine,	141
mixing	durations,	146–150
multiple	dates,	131–135
overview,	127–129
temporal	many-to-many	relationships,	161–167
time	shifting,	135–136

LASTDATE	function,	114–115,	141,	226
LASTDAY	function,	68
periods
DATESINPERIOD	function,	69
non-overlapping,	79–80
overlapping,	82–84
overview,	78

PARALLELPERIOD	function,	68
relative	to	today,	80–82
SAMEPERIODLASTYEAR	function,	68,	87

SAMEPERIODLASTYEAR	function,	68,	87
separating	from	time,	67,	131
TOTALYTD	function,	226
working	days
multiple	countries,	74–77
overview,	72
single	countries,	72–74

date	dimensions
creating,	55–58
multiple,	61–66
using	with	time	dimensions,	66–68

DATESINPERIOD	function,	69
DATESYTD	function,	68,	70–71,	226
denormalization.	See	also	normalization

data	models,	13–15,	18–19
fact	tables,	35–40
flattening,	30–32

derived	snapshots
defined,	112
overview,	118–119

detail	tables
aggregating,	24–30
bidirectional	filtering,	25–29
dimensions,	23–24
flattening,	30–32
granularity,	27–29
hierarchies,	23–24
orders	and	invoices	example,	49–50
overview,	23–24

diagram	(relationship	diagram),	18
dimensions

ambiguity,	17–19,	43–45

automatic	time	dimensions
creating,	58–60
Excel,	58–59
Power	BI	Desktop,	60

date	dimensions
creating,	55–58
multiple,	61–66
using	with	time	dimensions,	66–68

defined,	15,	222
detail	tables,	23–24
fact	tables
bidirectional	filtering,	40–43
multiple	dimensions,	35–40

header	tables,	23–24
names,	20–21
rapidly	changing	dimensions,	106–109
relationships,	17–19
SCDs	(slowly	changing	dimensions)
dimensions,	102–104
fact	tables,	104–106
granularity,	102–106
loading,	99–106
overview,	91–95
rapidly	changing	dimensions,	106–109
techniques,	109–110
types,	92
using,	96–99
versions,	96–99

time	dimensions,	66–68
displaying

Power	Pivot	(Ribbon),	10
relationship	diagram,	18
values	(granularity),	181–185

DISTINCT	function,	40
DISTINCTCOUNT	function,	96–97

duration
active	events,	137–146
aggregating,	129–131
formula	engine,	141
mixing	durations,	146–150
multiple	dates,	131–135
overview,	127–129
temporal	many-to-many	relationships,	161–167
materializing,	166–167
reallocation	factors,	164–166

time	shifting,	135–136
dynamic	segmentation,	194–196

E
events	(active	events),	137–146
examples	(orders	and	invoices)

additive	measures,	51
bridge	tables,	52–53
detail	tables,	49–50
fact	tables,	45–53
header	tables,	49–50
many-to-many	relationships,	47,	52
one-to-many	relationships,	47–49

Excel
automatic	time	dimensions,	58–59
Power	BI	Desktop,	automatic	time	dimensions,	60
Power	Pivot,	viewing,	10

EXCEPT	function,	77–78

F
fact	tables

ambiguity,	17–19,	43–45
defined,	15,	221
denormalization,	35–40
detail	tables

aggregating,	24–30
bidirectional	filtering,	25–29
dimensions,	23–24
flattening,	30–32
granularity,	27–29
hierarchies,	23–24
orders	and	invoices	example,	49–50
overview,	23–24

dimensions
bidirectional	filtering,	40–43
detail	tables,	23–24
header	tables,	23–24
multiple	dimensions,	35–40

header	tables
aggregating,	24–30
bidirectional	filtering,	25–29
dimensions,	23–24
flattening,	30–32
granularity,	27–29
hierarchies,	23–24
orders	and	invoices	example,	49–50
overview,	23–24

names,	20–21
orders	and	invoices	example,	45–53
additive	measures,	51
bridge	tables,	52–53
detail	tables,	49–50
header	tables,	49–50
many-to-many	relationships,	47,	52
one-to-many	relationships,	47–49

overview,	35
relationships,	17–19
SCDs	(granularity),	104–106

FILTER	function,	148,	181,	193,	226
filtering

bidirectional	filtering	(cross-filtering)
CROSSFILTER	function,	43,	52,	98,	156–157,	159–160,	168,	220
detail	tables,	25–29
fact	tables,	40–43
granularity,	179–181
header	tables,	25–29
many-to-many	relationships,	155–157
overview,	218–221

FILTER	function,	148,	181,	193,	226
moving	filters	(granularity),	177–179
overview,	218–221

fiscal	calendars,	69–71
flattening,	30–32
foreign	keys,	defined,	9
formula	engine	(duration),	141
functions

ALL,	40
BLANK,	182
CALCULATE,	37,	43,	77,	124,	156,	181,	193,	220
CALCULATETABLE,	81,	124
CLOSINGBALANCELASTQUARTER,	226
CONTAINS,	178
COUNTROWS,	75,	97,	220
CROSSFILTER,	43,	52,	98,	156–157,	159–160,	168,	220
DATESINPERIOD,	69
DATESYTD,	68,	70–71,	226
DISTINCT,	40
DISTINCTCOUNT,	96–97
EXCEPT,	77–78
FILTER,	148,	181,	193,	226
HASONEVALUE,	77,	205
IF,	76
IFERROR,	193
INTERSECT,	37–38,	124,	178–179
ISEMPTY,	193

LASTDATE,	114–115,	141,	226
LASTDAY,	68
List.Numbers,	100
LOOKUPVALUE,	81,	86,	190–191
MAX,	101,	103,	195
MIN,	195
PARALLELPERIOD,	68
RELATED,	43,	61,	74
RELATEDTABLE,	61,	74
SAMEPERIODLASTYEAR,	68,	87
SUM,	114,	134–135,	144,	155–156
SUMMARIZE,	165
SUMX,	158
TOTALYTD,	226
TREATAS,	179
UNION,	40
USERELATIONSHIP,	44,	61
VALUES,	193

G
granularity

bidirectional	filtering,	179–181
budgets,	175–177
data	models
multiple	tables,	11–15
single	tables,	4–7

detail	tables,	27–29
header	tables,	27–29
moving	filters,	177–179
overview,	173–175
SCDs
dimensions,	102–104
fact	tables,	104–106

snapshots,	117
values

allocation	factor,	185–186
hiding,	181–185

H
HASONEVALUE	function,	77,	205
header	tables

aggregating,	24–30
bidirectional	filtering,	25–29
dimensions,	23–24
flattening,	30–32
granularity,	27–29
hierarchies,	23–24
orders	and	invoices	example,	49–50
overview,	23–24

hiding/viewing
Power	Pivot	(Ribbon),	10
relationship	diagram,	18
values	(granularity),	181–185

hierarchies	(tables),	23–24

I
IF	function,	76
IFERROR	function,	193
INTERSECT	function,	37–38,	124,	178–179
intervals.	See	duration
invoices	and	orders	example

additive	measures,	51
bridge	tables,	52–53
detail	tables,	49–50
fact	tables,	45–53
header	tables,	49–50
many-to-many	relationships,	47,	52
one-to-many	relationships,	47–49

ISEMPTY	function,	193

K–L

keys,	8–9
LASTDATE	function,	114–115,	141,	226
LASTDAY	function,	68
List.Numbers	function,	100
loading	SCDs,	99–106
LOOKUPVALUE	function,	81,	86,	190–191

M
many-to-many	relationships

bidirectional	filtering,	155–157
bridge	tables,	167–170
cascading,	158–161
fact	tables,	47,	52
non-additive	measures,	157–158
overview,	153–158
performance,	168–170
temporal	many-to-many	relationships,	161–167
materializing,	166–167
reallocation	factors,	164–166

many-to-one	relationships
defined,	9
fact	tables,	47–49

materializing	(many-to-many	relationships),	166–167
matrixes	(transition	matrixes)

slicers,	123–124
snapshots,	119–125

MAX	function,	101,	103,	195
measures

additive,	114–117,	225
aggregating	snapshots,	114–117
many-to-many	relationships,	157–158
non-additive,	157–158,	225
semi-additive,	114–117,	225–226

MIN	function,	195
mixing	durations,	146–150
models.	See	data	models
moving	filters	(granularity),	177–179
multiple	columns	(segmentation),	189–192
multiple	countries	(working	days),	74–77
multiple	date	dimensions,	61–66
multiple	dates	(duration),	131–135
multiple	dimensions	(fact	tables),	35–40
multiple	durations,	mixing,	146–150
multiple	reporting	currencies

multiple	source	currencies,	212–214
single	source	currency,	208–212

multiple	source	currencies
multiple	reporting	currencies,	212–214
single	reporting	currency,	204–208

multiple	tables	(granularity),	11–15

N
names

columns,	20–21
dimensions,	20–21
fact	tables,	20–21
objects,	20–21
tables,	20–21

natural	snapshots,	112
non-additive	measures

many-to-many	relationships,	157–158
overview,	225

non-overlapping	periods,	79–80
normalization

data	models,	12–15,	18–19
denormalization
data	models,	13–15,	18–19
fact	tables,	35–40

flattening,	30–32

O
object	names,	20–21
OLTP	(online	transactional	processing),	13–15
one-to-many	relationships

defined,	9
fact	tables,	47–49

online	transactional	processing	(OLTP),	13–15
orders	and	invoices	example

additive	measures,	51
bridge	tables,	52–53
detail	tables,	49–50
fact	tables,	45–53
header	tables,	49–50
many-to-many	relationships,	47,	52
one-to-many	relationships,	47–49

overlapping	periods,	82–84

P
PARALLELPERIOD	function,	68
performance	(many-to-many	relationships),	168–170
periods

dates
non-overlapping,	79–80
overlapping,	82–84
overview,	78
relative	to	today,	80–82

DATESINPERIOD	function,	69
PARALLELPERIOD	function,	68
SAMEPERIODLASTYEAR	function,	68,	87

Power	BI	Desktop,	automatic	time	dimensions,	60
Power	Pivot,	viewing,	10
primary	keys,	defined,	8–9

R
rapidly	changing	dimensions,	106–109
reallocation	factors	(many-to-many	relationships),	164–166
RELATED	function,	43,	61,	74
RELATEDTABLE	function,	61,	74
relationship	diagram,	18
relationships

ambiguity,	17–19,	43–45
data	models,	7–15
denormalization,	13–15,	18–19
dimensions,	17–19
fact	tables,	17–19
foreign	keys,	9
granularity
allocation	factor,	185–186
bidirectional	filtering,	179–181
budgets,	175–177
hiding	values,	181–185
moving	filters,	177–179
multiple	tables,	11–15

many-to-many	relationships.	See	many-to-many	relationships
normalization,	12–15,	18–19
OLTP,	13–15
one-to-many	relationships
defined,	9
fact	tables,	47–49

overview,	217–218
primary	keys,	8–9
relationship	diagram,	18
segmentation,	multiple	columns,	189–192
source	tables,	9
tables,	7–15
targets,	9

reporting	currencies

multiple	reporting	currencies
multiple	source	currencies,	212–214
single	source	currency,	208–212

single	reporting	currency,	multiple	source	currencies,	204–208
Ribbon,	viewing	Power	Pivot,	10

S
SAMEPERIODLASTYEAR	function,	68,	87
SCDs	(slowly	changing	dimensions)

granularity
dimensions,	102–104
fact	tables,	104–106

loading,	99–106
overview,	91–95
rapidly	changing	dimensions,	106–109
techniques,	109–110
types,	92
using,	96–99
versions,	96–99

schemas
snowflake	schemas,	overview,	18–19,	222–223
star	schemas,	overview,	15–19,	222

segmentation
ABC	analysis,	196–200
calculated	columns,	196–200
dynamic,	194–196
multiple-column	relationships,	189–192
overview,	189
static,	192–193

semi-additive	measures
aggregating	snapshots,	114–117
overview,	225–226

shifting	(time	shifting),	135–136
showing

Power	Pivot	(Ribbon),	10

relationship	diagram,	18
values	(granularity),	181–185

single	countries	(working	days),	72–74
single	reporting	currency,	multiple	source	currencies,	204–208
single	source	currency,	multiple	reporting	currencies,	208–212
single	tables	(data	models),	2–7
size.	See	granularity
slicers	(transition	matrixes),	123–124
slowly	changing	dimensions	(SCDs)

granularity
dimensions,	102–104
fact	tables,	104–106

loading,	99–106
overview,	91–95
rapidly	changing	dimensions,	106–109
techniques,	109–110
types,	92
using,	96–99
versions,	96–99

snapshots
additive	measures,	114–117
aggregating,	112–117
derived,	112,	118–119
granularity,	117
natural,	112
overview,	111–112
semi-additive	measures,	114–117
slicers,	123–124
transition	matrixes,	119–125
types,	112

snowflake	schemas,	overview,	18–19,	222–223
source	currencies

multiple	source	currencies
multiple	reporting	currencies,	212–214
single	reporting	currency,	204–208

single	source	currency,	multiple	reporting	currencies,	208–212
source	tables,	defined,	9
star	schemas,	overview,	15–19,	222
static	segmentation,	192–193
SUM	function,	114,	134–135,	144,	155–156
SUMMARIZE	function,	165
SUMX	function,	158

T
tables

bridge	tables
defined,	222
many-to-many	relationships,	167–170
orders	and	invoices	example,	52–53
overview,	224

CALCULATETABLE	function,	81,	124
columns
calculated	columns,	196–200
foreign	keys,	defined,	9
multiple-column	relationships,	189–192
names,	20–21

tables	(continued)
primary	keys,	defined,	8–9
segmentation,	189–192,	196–200

denormalization,	13–15,	18–19
detail	tables
aggregating,	24–30
bidirectional	filtering,	25–29
dimensions,	23–24
flattening,	30–32
granularity,	27–29
hierarchies,	23–24
orders	and	invoices	example,	49–50
overview,	23–24

dimensions.	See	dimensions

fact	tables.	See	fact	tables
foreign	keys,	9
granularity.	See	granularity
header	tables
aggregating,	24–30
bidirectional	filtering,	25–29
dimensions,	23–24
flattening,	30–32
granularity,	27–29
hierarchies,	23–24
orders	and	invoices	example,	49–50
overview,	23–24

many-to-many	relationships.	See	many-to-many	relationships
names,	20–21
normalization,	12–15,	18–19
OLTP,	13–15
one-to-many	relationships
defined,	9
fact	tables,	47–49

overview,	215–216
primary	keys,	8–9
RELATEDTABLE	function,	61,	74
relationships.	See	relationships
single	tables,	2–7
snapshots
additive	measures,	114–117
aggregating,	112–117
derived,	112,	118–119
granularity,	117
natural,	112
overview,	111–112
semi-additive	measures,	114–117
slicers,	123–124
transition	matrixes,	119–125
types,	112

source	tables,	9
targets,	9
transition	matrixes
slicers,	123–124
snapshots,	119–125

targets,	defined,	9
techniques	(SCDs),	109–110
temporal	data.	See	duration
temporal	many-to-many	relationships,	161–167

materializing,	166–167
reallocation	factors,	164–166

time.	See	also	date
duration
active	events,	137–146
aggregating,	129–131
formula	engine,	141
mixing	durations,	146–150
multiple	dates,	131–135
overview,	127–129
temporal	many-to-many	relationships,	161–167
time	shifting,	135–136

separating	from	date,	67,	131
time	dimensions
automatic	time	dimensions,	58–60
using	with	date	dimensions,	66–68

time	intelligence.	See	time	intelligence
time	dimensions

automatic	time	dimensions
creating,	58–60
Excel,	58–59
Power	BI	Desktop,	60

using	with	date	dimensions,	66–68
time	intelligence

calculating,	68–69
calendars

fiscal	calendars,	69–71
weekly	calendars,	84–89

date	dimensions
creating,	55–58
multiple,	61–66
using	with	time	dimensions,	66–68

periods
non-overlapping,	79–80
overlapping,	82–84
overview,	78
relative	to	today,	80–82

time	dimensions
automatic	time	dimensions,	58–60
using	with	date	dimensions,	66–68

working	days
multiple	countries,	74–77
overview,	72
single	countries,	72–74

time	shifting	(duration),	135–136
today	(periods	relative	to),	80–82
TOTALYTD	function,	226
transition	matrixes

slicers,	123–124
snapshots,	119–125

TREATAS	function,	179
types

SCDs,	92
snapshots,	112

U
UNION	function,	40
USERELATIONSHIP	function,	44,	61
using	SCDs,	96–99

V

values
granularity
allocation	factor,	185–186
hiding,	181–185

HASONEVALUE	function,	77,	205
LOOKUPVALUE	function,	81,	86,	190–191
VALUES	function,	193

VALUES	function,	193
versions	(SCDs),	96–99
viewing

Power	Pivot	(Ribbon),	10
relationship	diagram,	18
values	(granularity),	181–185

W
weekly	calendars,	84–89
working	days

multiple	countries,	74–77
overview,	72
single	countries,	72–74

working	shifts.	See	duration

Code	Snippets

Many	titles	include	programming	code	or	configuration	examples.	To	optimize	the
presentation	of	these	elements,	view	the	eBook	in	single-column,	landscape	mode
and	adjust	the	font	size	to	the	smallest	setting.	In	addition	to	presenting	code	and
configurations	in	the	reflowable	text	format,	we	have	included	images	of	the	code
that	mimic	the	presentation	found	in	the	print	book;	therefore,	where	the
reflowable	format	may	compromise	the	presentation	of	the	code	listing,	you	will
see	a	“Click	here	to	view	code	image”	link.	Click	the	link	to	view	the	print-
fidelity	code	image.	To	return	to	the	previous	page	viewed,	click	the	Back	button
on	your	device	or	app.

	Title Page
	Copyright Page
	Contents at a glance
	Contents
	Introduction
	Who this book is for
	Assumptions about you
	Organization of this book
	Conventions
	About the companion content
	Acknowledgments
	Errata and book support
	We want to hear from you
	Stay in touch

	Chapter 1. Introduction to data modeling
	Working with a single table
	Introducing the data model
	Introducing star schemas
	Understanding the importance of naming objects
	Conclusions

	Chapter 2. Using header/detail tables
	Introducing header/detail
	Aggregating values from the header
	Flattening header/detail
	Conclusions

	Chapter 3. Using multiple fact tables
	Using denormalized fact tables
	Filtering across dimensions
	Understanding model ambiguity
	Using orders and invoices
	Calculating the total invoiced for the customer
	Calculating the number of invoices that include the given order of the given customer
	Calculating the amount of the order, if invoiced

	Conclusions

	Chapter 4. Working with date and time
	Creating a date dimension
	Understanding automatic time dimensions
	Automatic time grouping in Excel
	Automatic time grouping in Power BI Desktop

	Using multiple date dimensions
	Handling date and time
	Time-intelligence calculations
	Handling fiscal calendars
	Computing with working days
	Working days in a single country or region
	Working with multiple countries or regions

	Handling special periods of the year
	Using non-overlapping periods
	Periods relative to today
	Using overlapping periods

	Working with weekly calendars
	Conclusions

	Chapter 5. Tracking historical attributes
	Introducing slowly changing dimensions
	Using slowly changing dimensions
	Loading slowly changing dimensions
	Fixing granularity in the dimension
	Fixing granularity in the fact table

	Rapidly changing dimensions
	Choosing the right modeling technique
	Conclusions

	Chapter 6. Using snapshots
	Using data that you cannot aggregate over time
	Aggregating snapshots
	Understanding derived snapshots
	Understanding the transition matrix
	Conclusions

	Chapter 7. Analyzing date and time intervals
	Introduction to temporal data
	Aggregating with simple intervals
	Intervals crossing dates
	Modeling working shifts and time shifting
	Analyzing active events
	Mixing different durations
	Conclusions

	Chapter 8. Many-to-many relationships
	Introducing many-to-many relationships
	Understanding the bidirectional pattern
	Understanding non-additivity

	Cascading many-to-many
	Temporal many-to-many
	Reallocating factors and percentages
	Materializing many-to-many

	Using the fact tables as a bridge
	Performance considerations

	Conclusions

	Chapter 9. Working with different granularity
	Introduction to granularity
	Relationships at different granularity
	Analyzing budget data
	Using DAX code to move filters
	Filtering through relationships
	Hiding values at the wrong granularity
	Allocating values at a higher granularity

	Conclusions

	Chapter 10. Segmentation data models
	Computing multiple-column relationships
	Computing static segmentation
	Using dynamic segmentation
	Understanding the power of calculated columns: ABC analysis
	Conclusions

	Chapter 11. Working with multiple currencies
	Understanding different scenarios
	Multiple source currencies, single reporting currency
	Single source currency, multiple reporting currencies
	Multiple source currencies, multiple reporting currencies
	Conclusions

	Appendix A. Data modeling 101
	Tables
	Data types
	Relationships
	Filtering and cross-filtering
	Different types of models
	Star schema
	Snowflake schema
	Models with bridge tables

	Measures and additivity
	Additive measures
	Non-additive measures
	Semi-additive measures

	Index
	Code Snippets

